
A Framework for Analyzing the Performance of
Sparse Matrix and Graph Operations

Abstract—Thorough performance analysis is critical when
developing new algorithms, implementation, optimizations, and
transformations for compute intensive operations. This is es-
pecially true for operations that serve as the basic building
blocks for scientific libraries, such as the Basic Linear Algebra
Subprograms (BLAS). In the case of dense computations like
the BLAS it is sufficient to know the dimensions and strides
of one’s dataset to predict the performance from prior runs on
similar hardware. Thus, it is customary in the evaluation of these
types of dense routines to provide a performance profile that
sweeps through problem sizes to characterize the behavior of an
implementation. However, for operations over sparse matrices,
dimensions do not alone relay sufficient information to predict
the performance. The standard approach for evaluating the
performance of operations over sparse data is through the
performance evaluation of the operation over a canonical set of
sparse matrices. However, the ability to generalize these results
beyond those matrices to new datasets is limited.

In this paper, we present a framework to evaluate the per-
formance of operations using sparse matrix and graph models.
It visualizes the performance using parameterized graph models
and evaluates the efficacy of using different sets of parameters to
describe the input matrix and observe performance on different
implementations. The framework also assesses the tolerance of
the performance of different implementations to multiple sources
of noise induced to the input data on the performance, and to
the model parameters itself. Our framework is fully modular
and extensible in the sense that users can seamlessly plug in
their different graph model generators, with different parameter
sets, operation implementations, and additional types of noise
to inject and evaluate. Our framework also takes into account
system-wide performance rather than kernel-only performance.

Index Terms—Sparse Matrix, Graph, Performance Evaluation
and Visualization, Kronecker Graphs

I. INTRODUCTION

Large, sparse, and irregular data is central in the domains
such as graph analytics, graph neural networks, fluid mechan-
ics, and finite element analysis. Specifically, if a dynamic
relationship between elements in a dataset can be captured as
an edge-pair relationship between vertices then graphs provide
a natural representation of that data. Further, if the analysis
of the complex relationship in the data can be analyzed as
sequence linear algebra-like operations over the adjacency
matrices of these datasets, then operations such as Sparse
Matrix times Vector Multiplication (spMV) are critical to
the performance of computations in these domains. However,
optimizing operations like spMV are challenging because
the structure of the sparse data, the implementation of the
operation, and the architecture of the target have tremendous
bearing over the execution time of these operations. If a sparse
operation is tuned for one class of data, that performance may
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Fig. 1: Double Precision Dense General Matrix-Vector Multi-
plication Performance using cuBLAS on NVIDIA RTX A6000
GPU as a function of input size

not generalize to another class. The core of this work is to
provide a benchmarking framework for relating performance
against structural features of sparse data.

For dense matrices, performance evaluation and visualiza-
tion is straightforward. Figure 1 shows an example of perfor-
mance evaluation of the general matrix-vector multiplication
(GEMV) on a RTX A6000 GPU using cuBLAS. For simplic-
ity, evaluated matrices are assumed to be of square dimensions:
n × n. The horizontal axis represents the different values
of n evaluated, and the vertical axis shows the performance
in GFLOPs. Moving along the horizontal axis (from left to
right and from right to left) shows a clear correlation between
the matrix dimensions (n× n) and GEMV performance. Per-
formance interpolation from existing data points is possible,
based on the dense matrix dimensions (n)

On the other hand, Figure 2 shows a corresponding perfor-
mance evaluation for SpMV using cuSparse. Sample matrices
from the SuiteSparse collection [1] are evaluated. Table I lists
the properties of these matrices. The horizontal axis in Figure
2 represents different matrices, and the vertical axis shows the
SpMV performance in GFLOPs. In this case, moving along
the horizontal access does not provide any meaningful insights
regarding how SpMV performance changes across different
matrices. This is because different matrices have totally differ-
ent characteristics and there is not correlation between them.
Using dimension size on the x-axis (similar to the dense case)
also does not help draw conclusions since: a)two matrices
can be of the same dimensions, but have different sparsity
ratios, and b)sparse matrices from different applications can
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Fig. 2: Double Precision Sparse Matrix-Vector Multiplication
Performance using cuSparse on NVIDIA RTX A6000 GPU
for a selected set of matrices from SuiteSparse, using the
COOrdinate data representation.

have extremely different dimensions. Another variable to use
on the horizontal axis can be the number of non-zeros (NNZ).
However, also NNZ does not always provide enough insight
on the sparsity ratio or the dimensions of the sparse matrix.
Two matrices with similar NNZ can have completely differ-
ent dimensions and sparsity ratios. Moreover, while existing
performance evaluation models work on providing multiple
different performance metrics [2], face a set of limitations
adapting to sparse data workloads with regard to using a rep-
resentative feature/parameter being related to performance [3].
Also, the dependence on discrete sets of graphs/sparse matrices
for benchmarking such operations [1], [4], [5] limits the ability
to make performance interpolation and generalization across
a more diverse set of input data. Additionally, many existing
optimization techniques focus solely on the sparse operation
to be optimized, and do not have a global breakdown of the
system-level execution time, prohibiting further optimization
opportunities on other potential performance bottlenecks, such
as I/O.

TABLE I: Properties of the evaluated sparse matrices

Matrix rows columns nnz
12month1 12471 872622 22624727
bmwcra 148770 148770 10641602
bone010 986703 986703 47851783
consph 83334 83334 6010480

crankseg 52804 52804 10614210
pwtk 217918 217918 11524432
hood 220542 220542 9895422
sls 1748122 62729 6804304

torso1 116158 116158 8516500
mac econ fwd500 206500 206500 1273389

To address the above limitations, we propose a novel end-
to-end framework for performance analysis and evaluation of
sparse matrices and graph operation. The framework employs
parameterized graph models to generate synthetic graphs,
account for different sources of noise in model parameters

and choice of the correct model, and evaluates the sensitivity
of performance to these sources. Our framework focuses
on choosing a representative set of features/parameters that
relate to the performance of the operations on the input
data, enabling a new horizon of performance optimizations.
It provides multiple efficient ways of visualizing and relating
performance to different parameters. Our framework also
analyzes the overall system-level execution time to capture
additional performance bottlenecks, and derive optimization
decisions.

The main contributions of this work is as follows:
1) Propose an extensible framework for performance analy-

sis and evaluation for sparse data operations and driving
design choice for performance optimizations.

2) Evaluate the usage of different graph model parameters
and how it relates to performance interpolation and
extrapolation.

3) Provide an alternative to using discrete graph sets for
benchmarking sparse data workloads.

4) Estimate the effect of different noise sources in per-
formance, and integrating it into potential performance
interpolations.

5) Present a system-level breakdown of execution time,
rather than only focusing on the kernel to be optimized,
unleashing new potentials for additional system-wide
performance optimizations.

The rest of this paper is organized as follows: Section II
introduced the necessary background and discusses related
work, its limitations, and how they motivate the proposal
of our framework to address them. Section III details the
description of our proposed framework. Section IV shows
a set of experiments conducted through our framework and
discusses the results and observations. Finally, Section V
summarizes the findings of our paper.

II. BACKGROUND AND RELATED WORK

A. Sparse Matrix and Graph Operations

Many traditional and modern applications require the oper-
ation on sparse data in the form of sparse matrices. Examples
of these operations are Sparse Matrix-Dense Vector Multipli-
cation (SpMV), Sparse Matrix-Matrix Multiplication (SpMM),
and Sampled Dense-Dense Matrix Multiplication (SDDMM).
SpMV, for instance, is used in many applications such as
Natural Language Processing (NLP), scientific simulations,
finite element analysis, image processing, solvers for par-
tial differential equations (PDEs), and recommender systems.
Also, traditional graph operations can be cast into linear
algebra operations [6]. Due to the unique nature of sparse
matrices, different sparse data formats were implemented to
efficiently store them in memory. Examples of popular formats
are COOrdinate (COO), Compressed Sparse Row (CSR), and
Compressed Sparse Column (CSC) [7]. The implementation of
an alogrithm for a sparse operation (e.g. SpMV) is traditionally
tightly-coupled to the sparse data format used for storing the
sparse data. Multiple highly-tuned linear algebra libraries are



available to perform different sparse operations using different
sparse data formats. Examples of vendor-specific libraries are
Intel Math Kernel Library (MKL) [8] for CPU, NVIDIA
cuSparse [9], and AMD rocSPARSE [10].

B. Graph Models for Sparse Data

Many performance evaluation techniques for sparse data
emerged as a response to the generation of such data from en-
gineering and physics problem types. However, many real data
are more accurately represented by large scale-free synthetic
data that follow a power-law distribution such as Kronecker
graphs [11], [12] or a combination of Kronecker + Random
[13]. Kronecker graphs are a class of synthetic graphs that
have been widely used to model real-world networks, and are
generated by recursively applying the Kronecker product of a
small base graph with itself. Let A and B be two matrices.
Then, their Kronecker product A⊗B is given by

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (1)

where aij are the entries of A. The resulting graph has
a power-law degree distribution and exhibits a hierarchical
structure that captures both the local and global connectivity
patterns of the underlying real-world network.

To generate Kronecker graphs, an initiator matrix (typically
of size 2×2 or 3×3) is chosen, and the Kronecker product is
applied to this matrix by itself K times, where K is the Kro-
necker power. Then, a randomly generated probability matrix
is used to mask out random values in the Kronecker matrix
(remove edges from the Kronecker graph). Other compute-
efficient methods can be used to generate Kronecker graphs
such as ball dropping and grass hopping [14].

Additionally, many graph models have been proposed to
generate synthetic data that have similar properties to real
graphs [15]–[21]. Frameworks have been proposed to classify
input sparse data/graph into one of these models [22], and
to evaluate the robustness of such graph models in terms of
sensitivity of the graph structure to model parameters and
noise [23].

While generative graph models (e.g. Kronecker graphs)
provide a parameterized way of generating synthetic graphs
similar to real graphs, tools that try to fit real data to such
model (e.g. Kronfit [12]) are limited in estimation accuracy
of the model parameters. Hence, our framework uses different
generation models, but accounts for different sources of noise,
including noise in graph generation parameters.

C. Performance Evaluation for Sparse Data Operations

In order to correctly understand how modern algorithms
contribute to improving performance, several frameworks have
been proposed. The Graph Algorithm Iron Law (GAIL) [2]
targets graph processing algorithms, and proposes the usage
of more adequate metrics, other than just execution time, to
quantify performance contributions in regard to graphs. The

proposed metrics include algorithmic work, communication
volume, and bandwidth utilization. While these metrics can
provide a better understanding of the performance improve-
ments of different algorithms, the main focus of this work is
performance metrics (vertical axis of performance plots), and
not the graph model features/parameters which can affect these
performance metrics (horizontal axis of performance plots).

Fig. 3: Performance Evaluation of SpMV in MKL for different
sparse formats (COO, CSR, and CSC) on a set of sparse matri-
ces using the Roofline model. Since the arithmetic intensity is
imposed by the sparse data format, little insights are povided
on how to optimize performance.

The roofline model [3] has been the standard model used
in performance evaluation, where theoretical machine peak
performance and bandwidth bounds are calculated, and appli-
cation performance is recorded as a point under the theoretical
bounds curve. The x value for each point is the opera-
tional intensity (FLOPs/byte), and the y value is performance
(FLOPs). Additionally, many derived variants of the roofline
model have been developed to accommodate for different
memory hierarchy assumptions [24], capture the hardware
changes in modern architectures such as GPUs [25]–[27],
and work on finer granularity than a FLOP/byte such as in-
struction/transaction [28]. However, the application of roofline
model for applications on sparse data is less than adequate.
Assuming we are trying to optimize SpMV operation, and we
evaluate the performance of each algorithm using operational
(arithmetic) intensity, and FLOPs. Since SpMV are directly
coupled to a specific sparse data format (COO, CSR, CSC),
the operational intensity for any implementation is fixed for a
specific sparse data format, since the format imposes the size
(bytes) of the data pieces involved in the SpMV operation.
Figure 3 illustrates this issue, where the SpMV performance
was evaluated using COO, CSR, and CSC for a set of input
graphs. Most of the data points lie on the same vertical vertical
line in the figure, since they have similar arithmetic intensity
imposed by the sparse data format. This kind of plots provides



little insights on how to optimize such operations on sparse
data.

In response to the above limitations, we developed our
framework to evaluate using different features on the hori-
zontal axis of performance plots, which have the potential of
being exploited for performance optimization. These features
can be parameters used to generate graphs/sparse matrices
using a specific graph model. In addition, our framework is
flexible to incorporate any performance metric (vertical axis)
similar to the ones proposed in existing work (e.g. GRAIL),
while providing a better representation of datasets to enable
performance interpolation.

D. Benchmarking Sparse and Graph data Workloads

In order to benchmark sparse and graph data workloads, ap-
propriate input data needs to be fed to developing algorithms.
Most of existing work in literature on different performance
optimization for sparse matrices and graphs uses SNAP dataset
[4], SuiteSparse Matrix Collection [1], and GAP [5]. These
benchmarks provide a set of synthetic and real graphs/matrices
from different applications and structures. However, they are
limited in the sense that they are a discrete collection of
graphs. Interpolating the performance of unseen graphs from
a set of discrete graphs with no common continuity feature is
challenging. For example, the GAP benchmark graph dataset
consists of only five graphs. Tuning new algorithms on a
discrete set of graphs, it is difficult to expect the performance
interpolations to generalize across other sparse matrices and
graphs.

III. METHODS

Our framework aims at providing a modern infrastructure
for describing the performance of applications where sparse
data and graphs are involved. As demonstrated in Section
II, existing techniques fall short in this category of irregular
memory access applications. Our framework provides a means
of interpolating and extrapolating the performance of different
sparse matrices/graphs, based on models they closely fit.

The main goal of our framework is finding a relationship
between the graph generation mechanism and the resulting
performance for operations in which the graph is involved
as an operand. Such analysis allows for the identification
of promising graph generation parameters/features that show
direct influence on performance. Algorithms can be developed
to exploit these parameters to optimize the performance of
operations where graphs of this model are used as operands.

A. High-Level Overview

A general overview of the framework is shown in Algorithm
1. Initial Graphs are generated using a parameterized graph
model (generator). Each model takes as input a set of param-
eters. In addition to the initial set of graphs, the framework
generates additional sets Gs by varying the input parameters
within the legal range of values for each, while fixing the rest
of the values.

Algorithm 1 General Framework Description

1: for param in model gen params do
2: for val in param legal values do
3: new params = val∪(params−param old value)
4: G = gen(new params)
5: append G to Gs
6: for (n0=0;n0<nA_thresh;n0+=nA_step) do
7: GNA = gen noiseA(G,n0)
8: append GNA to GsNA

9: end for
10: for (n1=0;n1<nB_thresh;n1+=nB_step) do
11: GNB = gen noiseB(G,n1)
12: append GNB to GsNB

13: end for
14: for op in operations do
15: for impl in implementations[op] do
16: for fmt in sparse formats do
17: for graph in Gs ∪GsNA ∪GsNB do
18: r = record(perf eval(impl(fmt(graph))))
19: append r to results
20: end for
21: end for
22: end for
23: end for
24: end for
25: end for
26: for feature in features do
27: visualize(results, feature)
28: end for

Algorithm 2 Performance Evaluation Routine

1: time graph = load file(graph file)
2: time graph data = conv to fmt(graph)
3: time dev data = alloc mem dev(sizeof(graph data))
4: time cp mem to dev(dev data, graph data)
5: time warm up(operation, dev data, times)
6: time result dev = execute(operation, dev data, times)
7: time cp mem from dev(result host, result dev)
8: time verify(result host, golden result)
9: time deallocate mem()

Then, the framework induces two forms of noise indicated
in Algorithm 1 as noiseA and noiseB. noiseA tries to
capture noisy prediction of real data to the model parameter.
Graph models are expected to produce synthetic graphs with
similar features to real-world graphs, but noiseA tests the
effect of errors in these graph model parameters. noiseB on
the other hand assesses the cases in which the model alone
does not entirely describe the real data. Real graphs do not
appear as pure representation of a model, noisy data might be
added in the process of reading, transmitting, or pre-processing
such graphs. Also, those graphs do not hold any node ordering
guarantees.

The framework injects noiseA into Gs by adding small



random values (n0) from a uniform distribution with a max-
imum threshold of nA_thresh and a user-defined step of
nA_step to the model generation parameters, producing a
new set of Graphs: GsNA. Additionally, noiseB is added
to Gs as a random sparse matrix with density n1 in steps of
nB_step up to a maximum of nB_thresh, generating the
GsNB graph set.

After the completion of the graph sets generation phase,
performance of such graphs involved as operands in opera-
tions is to be evaluated. Multiple operations can be executed
where these graphs are operands, for example Sparse Matrix-
Vector Multiplication (SpMV), in which the graph represents
the sparse matrix. The graph or the sparse matrix can be
represented using different sparse formats (COO, CSR, CSC,
etc.), and each of these have their own implementation. The
framework evaluates the performance of SpMV using the
different formats and implementations for all generated graph
sets.

The final step is to relate performance to different fea-
tures and parameters of the graph model. These features and
parameters are then use to represent the horizontal axis of
the performance plots. The goal of such representation is to
find a relationship between a feature or a set of features,
and the performance of the operation on the graph. Using
this information, more efficient algorithms can be tuned to
optimize performance by exploiting features that exhibit strong
correlation with performance.

B. Performance Evaluation

Algorithm 2 shows a more detailed description of the
performance evaluation model. Generated graphs are stored
as files. In order to evaluate their performance in an operation
(SpMV), first step is to load each file into main memory.
Then, depending on the evaluated sparse data format, a format
conversion might be needed. If a device (GPU) is employed,
necessary memory needs to be allocated on that device, and
graph data structures in the target format need to be copied
from the host to the device. Memories are warmed up a number
of times to reduce performance numbers reporting errors. The
main operation is then executed for a number of times, to
record a distribution of execution times and check for any
variance or outliers in the reported numbers. Operation results
are copied back to the host, and are verified for correctness
using harness tests. Finally, unused memory is freed. The
application is instrumented and each of the described steps is
separately timed to report the break-down of execution time,
and identify potential performance bottlenecks as well.

IV. EVALUATION AND RESULTS

The general framework described in Algorithm 1 generates
a high-dimensional set of experiments involving different
combinations of parameters and noise values. We conducted
a sub-set of experiments to showcase the capabilities of our
framework. In this section, we report planar slices of some of
the experiments. Our framework was evaluated for both CPU

and GPU. Table II shows the configuration for the system used
in our experiments.

TABLE II: System Configuration

Component Specification

GPU NVIDIA RTX H100
GPU Memory 80 GB GDDR6
CUDA Version 12.0
CPU Intel Xeon Gold 6338
CPU Sockets 2
CPU Cores 128
MKL Version 2022.1.0
Main Memory 256 GB DDR4

A. Graphs Generated by Varying Model Parameters
In the first phase of our framework, a set of graphs is

generated by varying different graph model parameters. For
this experiment, we used the Kronecker Graph model.

1) K15 Graphs with Varying Initiator Matrix – Heatmaps:
A Kronecker power of 15 was used, and the initiator ma-
trix values were varied as follows: we start with a sample
2× 2 initiator matrix of the values [0.999, 0.437; 0.4370.484],
matching the estimated initiator values by Kronfit [12] for the
High Energy Physics - Phenomenology Collaboration (CA-
HEP-PH) Graph [29] from the SNAP dataset. Then, we fix
the first and last initiator matrix values, while varying the
other two, producing different combinations of them. For each
of the new generated initiator matrices, a new Kronecker
graph is generated. Finally, we evaluate the performance of
each as a sparse matrix in a SpMV operation. Figure 4
shows heatmaps generated by our framework, representing
the performance of SpMV for the generated K15 graphs,
using Intel MKL for different sparse data formats: COO, CSR,
and CSC. The choice of heatmap for the visualization of the
Kronecker graph performance enables observing relationship
between two different features (parameters) of the model (two
initiator matrix values), and how the performance changes with
varying both of the parameters. Also, the comparison between
different sparse data formats (COO, CSR, and CSC) drives the
decision of choosing the ideal data format, for the given input
graph model (K15), tool (MKL), and architecture (CPU). The
figure clearly shows that CSR is a winner among the three
evaluated formats in this specific situation. It also shows that
the performance of COO is stable across different x1 and x2

values, so no potential benefit appears from optimizing using
these two parameters for this specific format.

2) K21 Graphs with the Same Initiator Matrix – KDE: In
contrary to the previous experiment, we fix all initiator matrix
values and generate 100 different Kronecker graphs using the
same initiator matrix. However, we vary the Kronecker power
from 15 to 21. Then, the framework evaluates the performance
of the generated graphs using two tools: NVIDIA cuSparse
on GPU, and Intel MKL on CPU. For each of the tools, we
evaluate three different sparse representations: COO, CSR, and
CSC.

Figure 5 shows the performance results for this experiment.
Instead of using heatmaps to observe the performance variation



(a) COO (b) CSR (c) CSC

Fig. 4: MKL SpMV performance of K15 Kronecker Graphs with varying initiator matrix values x1 (x-axis), and x2 (y-axis).
The graph is represented in (a) COO, (b) CSR, and (c) CSC formats.

across a grid of different initiator matrix values, we use Kernel
Density Estimation (KDE) plots to visualize the frequency of
different performance ranges (in GFLOPs). The horizontal axis
represents the SpMV performance, while the vertical access
represents the number of graphs achieving that performance.
This type of plots is informative when a decision about the
optimal sparse format is to be made. Figures 5a and 5b show
that CSR is also the best performing format for the generated
K21 graphs of the same initiator matrix on both CPU and
GPU.

B. Multiple Different Models with Different Features

In this experiment, we evaluate the performance of different
graph models (vertical axis), and relate that performance to
different features of the models (horizontal axis). The purpose
of this experiment is to show if we can directly compare
the performance of different sparse matrix/graph models us-
ing common features. This shows if we can interpolate or
extrapolate the performance of different model from existing
performance results, by dialing different parameters/feature.

To conduct this experiment, we used 3 types of graphs: ran-
dom graphs generated using the density parameter, Kronecker
graphs generated using K power 15 and different initiator
matrix values, and select graphs from SNAP dataset collection.
The selected SNAP graph are shown in Table III.

Figure 6 shows the performance results of this experiment
using cuSparse on H100 GPU, plotted against number of
rows, number of non-zeros, and density used as features on
the horizontal axis. Each subplot illustrates the performance
of a specific sparse data representation out of the three we
evaluated: COO, CSR, and CSC.

Looking at the relationship between Performance and num-
ber of rows (Figure 6a,6b,6c), one can observe that it is not
a suitable feature to tune for performance, as compared to
the case in dense matrices. For example, for random sparse
matrices of the same number of rows, performance varies
significantly across the entire range of observed performance.

Regarding the choice of ideal format, Figure 6 shows the
need of using our framework to sweep across a wide range

(a) cuSparse on H100

(b) MKL on Intel Xeon Gold

Fig. 5: SpMV performance KDE for 100 Kronecker graphs
generated from the same initiator matrix using a Kronecker
power of 21. Tools evaluated are (a)cuSparse on H100 GPU,
and (b)MKL on Intel Xeon Gold CPU. COO, CSR, and
CSC sparse formats are evaluated. Performance in GFLOPs
is shown on the horizontal axis, and density is on the vertical
axis.



(a) COO Performance vs nrows (b) CSR Performance vs nrows (c) CSC Performance vs nrows

(d) COO Performance vs nnz (e) CSR Performance vs nnz (f) CSC Performance vs nnz

(g) COO Performance vs density (h) CSR Performance vs density (i) CSC Performance vs density

Fig. 6: cuSparse SpMV performance for: random, SNAP, and K15 graphs plotted against number of rows, number of non-zeros,
and density on the horizontal axis. COO, CSR, and CSC formats are evaluated.

of graph parameters and noise to generate graphs, and make
optimization decisions. For the SNAP subset of graphs we
evaluated, the maximum attained performance was for the
web-NotreDam in COO format, at 181 GFLOPs. If one was
to tune for only this subset of SNAP graphs, a conclusion
to use the COO format would have been made. However,
throughout our experiment, we can see that CSR shows the
global highest performance across the three graph models,
using cuSparse on the H100 GPU.

Random graph generators use a main parameter: density. All
of the generated random graphs were of the same dimensions
(square). We can see that density (Figure 6g,6h,6i) as a feature
on the x-axis, capture performance well for the random graph,

since it is directly a graph model parameter. However, it does
not work as well for Kronecker graphs; multiple graphs with
the same density exhibit different performance characteristics.
Also, for SNAP, looking at the scattered performance points,
one cannot interpolate or extrapolate the performance (using
existing performance data) at different density values that have
not been evaluated.

For number of non-zeros (Figure 6d,6e,6f), we can see
it can be better utilized to an extent to interpolate SNAP
graphs performance. However, Kronecker graphs still illustrate
performance variations for similar nnz values, where some
formats (CSC) are more unstable than others (CSR).



(a) cuSparse COO (b) cuSparse CSR (c) cuSparse CSC

(d) MKL COO (e) MKL CSR (f) MKL CSC

Fig. 7: SpMV Performance Boxplots for adding noise in the form of random sparse matrix with varying density (Alpha %) to
a subset of the generated K21 graphs. Performance Evaluation is performed using both cuSparse and MKL for COO, CSR,
and CSC sparse data formats.

TABLE III: Properties of the evaluated SNAP graphs

Graph Nodes Edges
soc-Epinions1 75,879 508,837

cit-HepPh 34,546 421,578
cit-HepTh 27,770 352,807
ca-HepPh 12,008 118,521

web-NotreDame 325,729 1,497,134
ca-GrQc 5,242 14,496

p2p-Gnutella25 22,687 54,705
p2p-Gnutella30 36,682 88,328

com-DBLP 317,080 1,049,866

C. Inducing Noise

Following the general description provided in algorithm
1, our framework evaluates the sensitivity of performance
to different types of noise: noiseA, which represents the
error from fitting a dataset to the model being generated,
and noiseB, which represents using the wrong model for
a dataset. The heatmaps shown in Figure 4 can also serve
as a means of evaluating noiseA : noise added to input
graph parameters, since each cell in the heatmap represent
the performance of a graph generated by varying two initiator
matrix values.

For noiseB, we present two slices of the high-dimensional

search space of noise: the first being injected noise in the form
of adding a random sparse graph of varying edge densities
to the original graph, and the second being swapping (re-
labelling) nodes in the original graph a number of times.

1) Adding Random Sparse Graphs with Varying Density:
For this experiment, we use the a smaller subset of the
K21 graphs generated before. For each of them, we generate
a number of sparse random matrices, with varying density.
In our experiment the lowest noise density was 0.000125%
(0.00000125 × 221 × 221 = 5, 497, 559 additional random
edges).

For cuSparse, we can see that adding noise to Kronecker
graphs in the form of random sparse matrices, changes the
median performance within ±10 GFLOPs for COO and CSR
(Figure 7a,7b). However, for MKL, the range of change for
median performance is limited: less than 0.06 GFLOPs for
COO, around 1 GFLOPs for CSR and CSC. This kind of per-
formance sensitivity to noise analysis enables the estimation
of performance of different graph models, given an expected
amount of noise, architecture, tool, and operation.

2) Relabelling Graph Nodes: Another kind of noiseB that
we evaluated using our framework is re-labelling nodes. The
re-labelling mechanism is implemented as follows: two nodes



(a) cuSparse COO (b) cuSparse CSR (c) cuSparse CSC

(d) MKL COO (e) MKL CSR (f) MKL CSC

Fig. 8: SpMV Performance Boxplots for adding noise in the form of swapping the labels of node pairs, selected based on
a weighted probability according to their degree. The swap is performed a number of times (horizontal axis). Performance
Evaluation is performed using both cuSparse and MKL for COO, CSR, and CSC sparse data formats.

are chosen using a weighted probability (heavier nodes have a
higher chance of being picked). Then, we swap the two nodes
labels in all edges they are a source or a destination in. This
counts as a single swap, and we evaluate a different number of
swaps. We evaluated up to 8 swaps only because the swapping
operation is computationally expensive.

Figure 8 shows the performance (vertical axis) sensitivity to
swapping node labels in the original graphs for a number of
times (horizontal axis). A subset of the previously generated
K21 Kronecker graphs was also used for this experiment. For
cuSparse, the range of change for the median performance
(GFLOPs) is around 3 GFLOPs. Most of the change happens
as soon as the first swap happens, and then performance almost
stabilizes for up to 8 swaps. The same effect is observed across
all the three evaluated sparse formats (COO, CSR, and CSC)
on the GPU.

For MKL, the effect of swapping nodes up to 8 swaps is
limited on performance, since the original performance range
of SpMV for these graphs is narrower than that of cuSparse.

D. System-Level Runtime – Practical Considerations

All performance results reported so far are only for the
actual operation (e.g. SpMV) invoked on the sparse data. How-
ever, in a practical settings, this is not the only overhead that
needs to be evaluated, as the overall system runtime involves

additional steps as shown in Algorithm 2, where recording the
performance of the actual computation represents only line
6 of the algorithm.

To this end, we isolated a single run and instrumented the
different phases of execution. For this experiment, we used
cuSparse with one input graph from the generated K21 Kro-
necker Graphs in COO format. Table IV shows the percentage
of execution time each of the activities is taking. The ”other”
set of activities include loading dynamic libraries, creating
cuSparse different structures, allocating cuSparse SpMV spe-
cific buffers, etc. From this table, we can see that loading the
graph file (from disk) and parsing it to store the sparse data
according the COO structure takes up the majority of execution
time. In our experiments, we used the Matrix Market (.mtx)
format to store our graphs.

This observation suggests that it is crucial to develop more
efficient techniques to load, parse, and store sparse data in
different sparse formats. Another direction is devising more
efficient file formats for sparse data. Also, using the same
graph a large number of times in multiple computations can
amortize for the high cost of loading the graph. Our framework
provides detailed analysis and insights that can greatly drive
the optimization process for different practical settings.



TABLE IV: Execution Time Breakdown for 1 instance of
SpMV in COO using cuSparse on H100 GPU as percentages
of the total binary execution time.

Activity Percentage
Loading (from disk) and Parsing Graph File in COO 89.17%

Memory allocation on GPU 0.001%
Copy from host to GPU 0.12%

SpMV Warmup (10 times) 0.008%
Actual SpMV (1 time) 0.0008%

Copy result from GPU to host 0.0024%
Result Verification on host 0.967%

Free memory (host and GPU) 0.061%
Other 9.66%

V. CONCLUSION

In this paper, we propose a highly modular framework for
evaluating and analyzing the performance of sparse matrix
and graph operations. Our proposed framework makes use
of parameterized graph models to generate graphs by varying
these parameters and observing performance. It also evalu-
ates the effect of inducing different types of noise to the
performance of sparse data operations: noise due to error in
model fitting tools, and noise rising from using the wrong
model for the data. Our framework focuses on evaluating
performance (using different metrics) against representative
parameters/features (horizontal axis of performance plots),
from which performance interpolations and extrapolation can
be performed. It also aims at overcoming the existing lim-
itation of using discrete graph sets to tune the performance
of sparse matrix and graph kernel. We show results from
sets of experiments, conducted through our framework to
show the potential it provides to draw insightful performance
optimization decisions.
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D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
C. Yang, J. D. Owens, M. Zalewski, T. Mattson, and J. Moreira, “Math-
ematical foundations of the graphblas,” in 2016 IEEE High Performance
Extreme Computing Conference (HPEC), 2016, pp. 1–9.

[7] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[8] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,

Intel Math Kernel Library. Cham: Springer International Publishing,
2014, pp. 167–188.

[9] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” in GPU Technology Conference, 2010.

[10] AMD, “rocsparse documentation
https://rocsparse.readthedocs.io/en/latest/,” 2023, [Online;
accessed 5-October-2023]. [Online]. Available:
https://rocsparse.readthedocs.io/en/latest/

[11] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Real-
istic, mathematically tractable graph generation and evolution, using
kronecker multiplication,” in Knowledge Discovery in Databases: PKDD
2005, A. M. Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. Gama, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 133–145.

[12] J. Leskovec and C. Faloutsos, “Scalable modeling of real graphs using
kronecker multiplication,” in Proceedings of the 24th International
Conference on Machine Learning, ser. ICML ’07. New York, NY,
USA: Association for Computing Machinery, 2007, p. 497–504.
[Online]. Available: https://doi.org/10.1145/1273496.1273559

[13] C. Seshadhri, A. Pinar, and T. G. Kolda, “An in-depth study of stochastic
kronecker graphs,” in 2011 IEEE 11th International Conference on Data
Mining, 2011, pp. 587–596.

[14] A. S. Ramani, N. Eikmeier, and D. F. Gleich, “Coin-flipping, ball-
dropping, and grass-hopping for generating random graphs from ma-
trices of edge probabilities,” SIAM Review, vol. 61, no. 3, pp. 549–595,
2019.
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