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Abstract. The performance of sparse matrix computation highly
depends on the matching of the matrix format with the underlying struc-
ture of the data being computed on. Different sparse matrix formats are
suitable for different structures of data. Therefore, the first challenge is
identifying the matrix structure before the computation to match it with
an appropriate data format. The second challenge is to avoid reading the
entire dataset before classifying it. This can be done by identifying the
matrix structure through samples and their features. Yet, it is possi-
ble that global features cannot be determined from a sampling set and
must instead be inferred from local features. To address these challenges,
we develop a framework that generates sparse matrix structure classifiers
using graph convolutional networks. The framework can also be extended
to other matrix structures using user-provided generators. The approach
achieves 97% classification accuracy on a set of representative sparse
matrix shapes.
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1 Introduction

(a) (b)

Diagonal Random Rand+Diag Kronecker

Diagonal 500 0 0 0

Random 0 490 10 0

Rand+Diag 0 40 460 0

Kronecker 0 20 0 480

(c)

Fig. 1. Efficacy of our classifier framework at determining structure when the data is
permuted. (a) is an off-diagonal matrix, (b) is a re-labelled variant of (a), and (c) is
the confusion matrix for the classifier framework on re-labelled matrices similar to (b).
By using GCNs our approach is invariant to node labelling and achieves around 97%
accuracy.
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Sparse matrices represent a fundamental building block used throughout the
field of scientific computing in applications, such as graph analytics, machine
learning, fluid mechanics, and finite element analysis [6,13]. Such matrices appear
as operands in numerous fundamental computational kernels such as sparse
matrix-vector multiplication (SpMV), Cholesky factorization, LU factorization,
sparse matrix-dense matrix multiplication, and matricized tensor times Khatri-
Rao product (MTTKRP) among others. Building efficient algorithms for this
class of kernels mainly depends on the storage format used for the sparse matrix
as observed in different studies [1,4]. A variety of such formats are proposed in
literature [9,10]. Hence, it is crucial to identify the structure of the matrix to
choose the ideal sparse format, and eventually tailor the algorithm to that format
to optimize the workload performance. However, identifying the structure of the
matrix is not always trivial. Figure 1a shows a spy plot of an off-diagonal sparse
matrix, and Fig. 1b shows the same matrix, with some of the original row indices
and column indices re-labelled. It is less obvious for the latter figure to provide
an insight of the original structure of the non-zeros within the matrix. Addition-
ally, in case of huge sparse matrices, we might only have access to samples of the
matrix. This could be because of computational or storage restrictions, or miss-
ing data. In these two cases (re-labelling and sub-sampling), we need efficient
techniques to recognize the shape of the input matrix.

To tackle mentioned issues, we propose a framework to identify sparse matri-
ces structures, using graph neural networks. Figure 1c shows the confusion matrix
for the proposed framework using four sample classes on re-labelled variants.
The framework design is modular, allowing users to easily augment it with new
structures generators or feature sets. The main contributions of this paper are
as follows:

– Proposing a novel, modular Graph Neural Network framework to accurately
predict the shapes of sparse matrices, including partial samples, and re-labelled
variants of original matrices.

– Presenting a new balanced synthetic dataset for structured sparse matrices.
– Providing a performance analysis of graph-level classification on sparse matri-

ces, using different feature sets.
– Introducing two new compact and efficient feature sets for matrices as graphs,

namely: Linear and Exponential Binned One-Hot Degree Encoding.

The rest of this paper is organized as follows: Sect. 2 introduces the necessary
background, Sect. 3 details the design of the proposed framework, Sect. 4 dis-
cusses the evaluation and results of the framework, while Sect. 5 describes related
work. Finally, Sect. 6 summarizes the findings of the paper.

2 Background

2.1 Graph Neural Networks

Graph neural networks (GNNs) [17] are a class of deep learning models that
operate on graphs or networks. Unlike traditional neural networks that operate



Using GNNs to Identify Sparse Matrix Structure 151

on structured data such as images or sequences, GNNs can handle arbitrary
graph structures with varying node and edge attributes, enabling them to learn
powerful representations of graph-structured data. The key idea behind GNNs
is to iteratively update node embeddings by aggregating information from the
embeddings of their neighbors through the “graph convolution” operation. By
stacking multiple layers of graph convolution and non-linear activation functions,
GNNs can learn hierarchical representations of the graph that capture both local
and global information.

2.2 Structured Matrices

Several common structures are observed in sparse matrices, such as:
Diagonal all non-zeros are located on the main or a secondary diagonal. This
structure represents a 1D mesh and commonly appears in various scientific and
engineering applications.
Random the non-zero elements are randomly distributed across the matrix,
with variable density. Such matrices have no specific identifiable structure.
Kronecker Graphs [11] are a class of synthetic graphs that have been widely
used to model real-world networks, and are generated by recursively applying
the Kronecker product of a small base graph with itself. Let A and B be two
matrices. Then, their Kronecker product A ⊗ B is given by

A ⊗ B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






(1)

where aij are the entries of A. We use these three classes of structures, and
a combination of them, as a representative set that can be combined to form
more complex relationships [16,20]. Our framework is not limited to only these
structures, and they serve as an example to evaluate its performance.

(a) Diagonal (b) Random

(c) Random+Diagonal (d) Kronecker Graph

Fig. 2. Global Degree Distribution for samples in each matrix (graph) class studied in
this paper. In our approach we classify the shape based on local views from sampled
data.
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Degree as a Representative Node Feature. Figure 2 illustrates that one
can accurately distinguish between the different classes based on the degree
distribution of the representative graph. For example, for Diagonal matrices
(Fig. 2a), the degree for all nodes is low, and is either constant or linear across
all nodes. Kronecker graphs follow a power-law degree distribution, with only a
few nodes having many connections (high degree) and most of the nodes having
relatively few connections (low degree). However, only the local per-node degree
view may be immediately available, and not the global graph view. An example
of such a case is only having a sample of the graph and not the entire graph due
to storage or computational limitations. The power of GNNs can be leveraged
to carry out the required task: the prediction of the sample matrix structure.

3 Framework Description

Fig. 3. High-Level overview of the framework. It consists of three main phases: dataset

generation, where the synthetic sparse matrices are generated, prepared as graphs,
and have feature set attached. Then, the GNN model training using 5-fold cross vali-
dation to capture the model performance, and then generate a trained model instances,
that is used later in the inference phase.

The goal of the proposed framework is to predict the structure of the input
sparse matrix through its classification into one of the configured target classes.
We use diagonal, random, diagonal+random, and Kronecker graph as examples
of these classes to evaluate the performance of the framework. New structures
can be seamlessly integrated. Figure 3 shows a high-level overview of the pro-
posed framework. It consists of three main stages: Dataset generation, Model
Training, and Inference. A synthetic dataset is generated using different genera-
tors for different shapes of matrices, which are then represented as graphs. In the
training phase, we use GNN with 5-fold cross validation to evaluate the model
performance. Finally, the trained model instance is used for later inference.

3.1 Dataset Generation

We generate a balanced dataset of 40K synthetic sparse matrices, covering the
four sample classes through individual generators. Each of the generators returns
a Coordinate (COO) representation for the matrix, excluding the actual non-zero
values. The COO representation is then used as the adjacency list to build the
graph representation.
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3.2 Feature Set Selection

A per-node feature vector is necessary for the graph neural network to classify
matrices. Node degree can be calculated for rows/columns in input matrices from
their graph representation.

One-Hot Degree Encoding uses a number of features equal to the maximum
degree + 1. A limitation of this encoding is that it requires the knowledge of
the maximum degree in the entire dataset before training. Also, the required
storage is proportional to the maximum degree recorded in the dataset, which
increases memory requirements and reduces maximum possible batch size during
training. Moreover, it poses complications during inference if the input matrix
has a degree greater than the maximum degree in the training set. In our dataset,
the maximum training set degree is 7710, so the length of one-hot encoding
feature vector per node is 7711, limiting the maximum batch size on GPU to
only 1 graph.

Local Degree Profile (LDP) [3] captures the local structural information of
nodes in their immediate neighborhood. LDP is calculated for each node as a
five-feature vector: the node degree, the minimum degree of its neighbors, the
maximum degree of its neighbors, the mean degree for its neighbors, and the
standard deviation of the degrees of each neighbors. LDP features are easy to
compute for any given graph. Additionally, the number of features per node is
fixed, regardless of the used training data. LDP incurs low storage overhead.

Linear Binned One-Hot Degree Encoding. (LBOH) We implement a mod-
ified version of one-hot encoding, to address its limitations. LBOH works by hav-
ing a fixed number of buckets for representing one-hot degrees. Buckets ranges
are designed as follows: a set individual sequential buckets from 0 t α (inclusive)
where α is a small integer (less than 10). Then, we add a set of buckets with
fixed step β from α: (α + β), (α + 2β), ..., (α + kβ) where (α + kβ) is the maxi-
mum degree threshold. Any degree greater than (α + kβ) is mapped to the final
bucket.

Fig. 4. An example of finding the linear binned one-hot degree encoding for a node
with degree = 5, where the parameters for the encoding scheme are α = 5, β = 3, and
k = 2. Degree 5 is mapped to its associated bucket (5 to 7), then the bucket index
(5) is represented using one-hot encoding (1 at the position where the value 5 exists, 0
otherwise).

Figure 4 shows an example of LBOH encoding. As opposed to One-Hot
Encoding, LBOH provides a fixed number of features regardless of the maxi-
mum degree in the training dataset. At the inference stage, only the values of α,
β, and k are needed.
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Exponential Binned One-Hot Degree Encoding (EBOH). The main dif-
ference between EBOH and LBOH is the kind of step between buckets ranges.
Instead of a linear step in LBOH, EBOH uses an exponential step to cover more
degree values with a small number of features. First, the value of α is chosen
such that 1 ≤ α ≤ 3. Then for the buckets, a sequential one-to-one mapping is
performed for values 0 through 2α. For the following buckets, the upper bound
(inclusive) is 2α+i where i ∈ [1, k] and k ∈ N

∗.

Fig. 5. An example of finding the exponential binned one-hot degree encoding for a
node with degree = 7880, where the parameters for the encoding scheme are α = 2

and k = 3. Degree 7880 is mapped to its associated bucket (33 to ∞), then the bucket
index (8) is represented using one-hot encoding (1 at the position where the value 8
exists, 0 otherwise).

Figure 5 shows an example of EBOH encoding. EBOH encoding still provides
the benefit of having the number of features independent of the maximum degree
in the training set.

3.3 The Graph Neural Network Architecture

Fig. 6. Graph Neural Network architecture.

To identify the structure of the input matrix, the matrix is viewed as the adja-
cency list of a graph, enabling the use of machine learning methods designed for
graph data. GNNs provide additional benefits such as allowing the use of matrices
(graphs) of arbitrary sizes as input, Also, GNNs are agnostic to node ordering.
This powerful property enables re-labelling or permuting nodes in a graph rep-
resenting a sparse matrix, while maintaining accurate predictions. The machine
learning task of interest is graph-level prediction since a single label (class) is
needed for an entire graph (matrix). The GNN architecture is shown in Fig. 6.
The hidden layers are three graph convolution layers and one linear (output)
layer. Graph convolution is an operation where node embeddings are iteratively
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generated as the aggregations from the node neighborhoods. This operation is
used to capture complex features of the graph. The first convolution layer aggre-
gates information from the local neighborhood of each node. This operation is
repeated in subsequent convolution layers in order to propagate information to
increasingly larger neighborhoods. By the end of three convolution layers, the
model has learned a hierarchical representation of the graph, where the features
at each layer capture increasingly complex structural patterns. The learned rep-
resentation so far is “node embeddings”. Then, learned node embeddings are
reduced into a single graph embedding using a global mean pooling operation
(called readout layer). Samples are randomly dropped out to reduce overfitting.
Finally, a linear classifier is applied to the graph embedding.

def generateDiagRandom(size, threshold=2):

tuples = [(x,y) for x in range(size) for y in range(size) if (random
.randint(0,10) <= threshold or x == y)]

coo_rep = list(map(list, zip(*tuples)))

return coo_rep[0], coo_rep[1], [size, size]

def process(self):
catMap = [...., {

’num_iter’:10000,

’generator’:generateDiagRandom,

’gen_params’:[’random.randint(MIN_DIM_SIZE,MAX_DIM_SIZE)’] }]

Fig. 7. The two steps needed to add a new class to the classifier framework. First
(top), create a new generator function in the generators file, and second (bottom), add
a dictionary entry to catMap list in the process method of the dataset class.

Modularity. New shapes of matrices can be easily integrated in our framework.
To achieve this, two steps are needed as shown in Fig. 7: (1) write a generator
for that new shape, and (2) add an entry to the categories (shapes) map in
the dataset class for this shape, containing the number of dataset instances to
generate, the name of the generator function, and the different required param-
eters. The generator is required to return the COO representation excluding
values, and the matrix dimensions. After generating the new dataset instances
for this class, one does not need to re-train the entire model again. Transfer
learning [21] can be used to replace the last layer of the trained model with a
new layer that has the appropriate number of outputs, after introducing the new
shape(s). Then, the weights of all previous layers are frozen and only the new
layer is trained. Another aspect of modularity in our framework is the ability
to seamlessly attach different feature sets. Feature sets are only computed when
the graph is queried. To implement a new feature set, a modification to the get

method of the dataset is needed. This method first reads in the graph file from
disk, calculates the new feature set, and attaches it to the graph.
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4 Analysis

We run a set of experiments to evaluate the accuracy of our approach in detecting
structures, using the different feature representation discussed in Sect. 3.2.

4.1 Evaluation

Experimental Setup. Table 1 shows the experimental setup and learning
parameters used in the experiments. We use PyTorch Geometric [8] for the GNN.

Evaluation Metrics. To evaluate the prediction accuracy of the framework,
four derived metrics are used: accuracy, precision, recall, and F1-score. We report
per-class and overall accuracy and F1 score numbers, since the latter is the har-
monic mean of precision and recall. Using both accuracy and F1-score helps pro-
vide a more comprehensive evaluation of the framework’s performance. Accuracy
gives an overall view of how well the classifier is performing, while the F1-score
provides insights into its ability to correctly classify positive instances.

Table 1. Experimental setup and Training parameters used in the experiments. *
Batch size used for traditional one-hot encoding is 1.

Component Specification Parameter Value

GPU NVIDIA RTX A6000 Optimizer Adam

GPU Memory 48 GB GDDR6 Learning Rate 0.01

CUDA Version 11.8 Error Criterion Cross Entropy

Main Memory 64 GB DDR4 Batch Size 256*

Operating System Ubuntu 22.04 Cross Validation Folds 5

4.2 Results

Table 2. Performance of the classifier for different degree representations

Degree Representation

One-Hot Encoding LDP LBOH EBOH

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Diagonal 1.0 0.90 1.0 0.97 1.0 1.0 1.0 1.0

Random 0.90 0.91 0.64 0.76 0.92 0.95 0.95 0.96

Random+Diagonal 0.86 0.99 0.98 0.83 0.96 0.94 0.97 0.96

Kronecker 0.90 0.94 0.90 0.93 0.98 0.97 0.96 0.98

Overall 0.90 0.90 0.88 0.88 0.97 0.97 0.97 0.98

Classification Performance. Table 2 shows the accuracy and F1 score for
the classifier using the different degree representations discussed in Sect. 3.2.
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Performance results show that both LBOH, and EBOH provide high prediction
accuracy of around 97% and a F1 score of around 98%. On the other hand,
traditional one-hot encoding exhibits a lower accuracy of around 90%. One-
Hot Encoding requires a significantly large number of features per node (7711),
limiting the training batch size on the A6000 GPU to only one graph. This
forces the optimizer to adjust the neural network weights very frequently, hence
hurting the overall accuracy. Using LDP as a feature set exhibits variant model
performance across folds depending on the validation set being used. In some
folds, LDP provides high accuracy of around 97% to 98% similar to EBOH. In
other folds, LDP fails to converge to an acceptable loss value, and ends up with
an accuracy of around 74% on the last few epochs. This performance variance
across folds deems LDP unfit for the purposes of our application. It significantly
fails in two classes: Random and Kronecker. It predicts Random matrices as
Random+Diagonal for more than 32.5% of the instances. This is likely due to
the prevalence of the local degree neighbor summary features (the last four
LDP features) instead of focusing on the node degree. This eventually results
in failing to discover the global hierarchical structures in the matrix. LDP still
shows perfect accuracy in case of diagonal matrices since almost all nodes in
the matrix’s graph have the same degree. LDP prediction quality for Kronecker
graphs is also lower than other evaluated feature sets (around 81% in some folds)
for the same reasons.

(a) (b)

Fig. 8. Cross Entropy Loss across different folds in 5-fold cross validation training using
(a) EBOH, and (b) LDP feature set.

Fig. 8a demonstrates the validation loss across the 5 different folds for EBOH.
It shows almost no variance in the loss across the different folds, indicating the
stability of the model’s performance across folds. On the other hand, Fig. 8b
shows the validation loss for LDP and illustrates that the loss does not converge
in 2 out of 5 folds.
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Classifying Sub-samples and Re-labelled Subgraphs. To test the efficacy
of GNN on both aspects, we generate 200 new matrices: 50 for each of the
four classes. For each of them, we generate 10 subgraphs and 10 re-labelled
variants. To generate the subgraphs, we use uniform random node sampling
(URNS) [12]: nodes are randomly selected with uniform probability, as well as the
edges connecting the selected nodes. Re-labelling of a graph G simply renames
the nodes V of the graph, and produces a new graph G′ with the same size and
degree distribution of the original graph G. Figure 9 shows an example of both
URNS and random re-labelling.

Table 3. Accuracy comparison for node sampling, node re-labelling, and original
graphs using EBOH feature set.

Class Node Sampling Node Re-labelling Original Graphs

Diagonal 1 1 1

Random 0.83 0.98 0.98

Random+Diagonal 0.92 0.92 0.92

Kronecker 0.94 0.96 0.96

Overall 0.92 0.97 0.97

Table 3 shows the model’s performance on subgraphs and re-labelled variants
as compared to original full graphs. The table shows that re-labelling node has
no impact on the classification accuracy; it shows the same overall accuracy of
around 97% which is observed for the original graphs. This is expected because
the arrangement of nodes in a graph is irrelevant, since the graph has the same
degree distribution. For subgraphs generated using URNS of larger graphs, the
overall accuracy drops to around 92%. The reason being that random node
sampling can alter the degree distribution of the graph. The random choice of
nodes can result in either isolated nodes (no edges) or much lower degree nodes
as compared to the original graph. This affects the accuracy specially for complex

a

b c

d

e

f

Original graph

b c

d

Subgraph

c

a b

f

e

d

Re-labelled graph

Fig. 9. Example of generating a random sub-sample and a re-labelled variant of a
graph. The original graph (left) contains six nodes. Using URNS, a random subgraph
(middle) of three nodes is generated. A re-labelled variant (right) is generated using a
random 1:1 mapping between the original and new node labels.
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shapes such as random and Kronecker graphs. One way to reduce the accuracy
loss for samples is to use a more sophisticated graph sampling technique rather
than randomly selecting nodes or edges.

5 Related Work

Prediction on Sparse Matrices. Several studies investigated the use of
machine learning to predict the optimal sparse format for SpMV on CPU and
GPU [2,14,15,18,19,23]. Our framework does not directly predict the best sparse
format, instead, we only predict the structure of the input matrix. This allows
de-coupling the sparsity pattern from the sparse format, following the argument
adopted by AlphaSparse [7] since our framework also allows the seamless integra-
tion of new classes. Existing techniques collect a set of features from each matrix
such as: the number of diagonals, the ratio of true diagonals to total diagonals,
the (maximum) number of non-zeros per row, the variation of the number of
nonzeros per row, the ratio of nonzeros in DIA and ELL data structures, and a
factor or power-law distribution. We only need to calculate one feature per node:
its degree. Also, [23] uses a CNN approach to treat matrices as images, and in
order to fix the size of the matrix, they normalize input matrices into fixed size
blocks, losing partial matrix information in the process. In contrast, our app-
roach handles arbitrary sizes of matrices, without losing precision, leveraging
the power of Graph Neural Networks. We can optionally sample large matrices
and maintain high prediction accuracy. An additional benefit to our framework
is that it is order in-variant, since matrices are represented as graphs.

Graph Representation for Learning. Representing non-attribute graphs is
an open problem [5]. Common approaches employ graph properties such as node
degree, more specifically a one-hot encoding of the degree [22]. One-hot encod-
ing suffers from numerous limitations (Sect. 3.2). LDP [3] provides a compact
representation for graph using five features per node. Although the computation
of such feature vector is efficient, using LDP results in unreliable model per-
formance for our task (Sect. 4.2). Both our representations (LBOH and EBOH)
outperform one-hot encoding and LDP while addressing their shortcomings.

6 Summary

In this paper, we proposed a GNN based framework to classify structured sparse
matrices. We introduced two novel non-attribute graph representations based on
node degrees: LBOH, and EBOH. We evaluated the efficacy of our framework on
a synthetic, balanced dataset of matrices that we generated containing random
matrices from four sample classes: diagonal, random, random+diagonal, and
Kronecker graphs. Performance results demonstrate a high classification accu-
racy of 97% for the framework when using our feature sets: LBOH and EBOH.
They also show high accuracy of 92% and 97% on random node subsamples
and re-labelled variants respectively. Our framework is modular, allowing the
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inclusion of additional classes with minimal user effort. Future endeavors target
the automatic generation of the optimal sparse data format and algorithm for
sparse matrix kernels, using the obtained prediction results from the current
framework.
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