
ECC Cache: A Lightweight Error Detection for Phase-Change
Memory Stuck-At Faults

Chao Zhang, Khaled Abdelaal, Angel Chen, Xinhui Zhao, Wujie Wen, and Xiaochen Guo
Lehigh University, Pennsylvania, PA, 18015, USA

{chz616,kha217,anc520,xiz820,wuw219,xig515}@lehigh.edu

ABSTRACT
DRAM scaling has been slowed down. Emerging non-volatile mem-
ories (e.g., Phase-Change Memory) promises higher density, better
scalability, and persistence. However, endurance is a fundamental
issue that hinders the broad adoption of PCM—after repeated writes,
a PCM cell can get stuck at a value and be no longer programmable.
The prevalence of this stuck-at fault issue requires error detection
and correction mechanisms for PCM. Existing solutions such as
verify-after-write adds additional latency to PCM writes, which de-
grades overall system performance. Other solutions like in-memory
error-correcting code (ECC) requires a high storage overhead and
introduces more reliability issue because ECC bits tend to wear out
faster than the protected data bits.

In this paper, a novel stuck-at faults detection technique is pro-
posed to improve performance and reliability simultaneously. Since
stuck-at faults can only be detected after new writes, ECC does
not need to be stored permanently and can be deleted immediately
after a one-time detection, which helps to reduce ECC storage over-
head. Therefore, this work proposes to use a small on-chip ECC
cache to store the temporary ECC entries, which does not suffer
from endurance issue. To maximize the utilization of the limited
cache space, this work optimizes ECC entry insertion and dele-
tion mechanisms and exploits memory bank-level parallelism to
minimize performance impact. For the evaluated workloads, the
proposed ECC cache achieves an average of 9.4% of the performance
improvement over the baseline with a verify-after-write detection.

CCS CONCEPTS
• Hardware→ Memory and dense storage.

KEYWORDS
PCM, Stuck-at-Fault, Error Detection, ECC, Verify-after-Write
ACM Reference Format:
Chao Zhang, Khaled Abdelaal, Angel Chen, Xinhui Zhao, Wujie Wen, and
Xiaochen Guo. 2020. ECC Cache: A Lightweight Error Detection for Phase-
Change Memory Stuck-At Faults. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’20), November 2–5, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3400302.3415650

1 INTRODUCTION
As the scaling of DRAM technology to smaller feature sizes becomes
increasingly difficult [19], PCM holds the potential to complement
DRAM as a new memory device that blurs the boundary between
the storage and the working memory or even replace DRAM as the
main memory. However, PCM suffers from limited endurance. That

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415650

0
0.2
0.4
0.6
0.8

1
1.2
1.4

bo
dy
tr
ac
k

ca
nn
ea
l

de
du

p
fe
rr
et

bw
av
e

ca
ct
ub

ss
n

ca
m
4

de
ep

sje
ng

im
ag
ic
k

le
el
a

m
cf

om
ne
tp
p

pe
rlb

en
ch

ro
m w
rf

xa
la
nc
bm

k
ch
ol
es
ky ff
t

oc
ea
n_
cp

ra
di
os
ity

vo
lre

nd
w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia
l

G
EO

M
EA

N

With CheckerRead Without CheckerRead

Figure 1: Performance impact of checker reads. Experimen-
tal setup is described in Section 4.

is, after a limited number of writes to a memory cell (on average
106- 108) [13, 43], the PCM cell can get stuck at either ‘0’ or ‘1’.

Existing fault tolerance techniques for PCM [17, 29, 33, 36, 42]
focus mainly on providing error correction for stuck-at faults, while
error detection has received very little attention. One common error
detection mechanism is called verify-after-write [14], which simply
issues an additional read (checker read) after each write. The checker
read reads from the memory array after write finishes and the
returned value is compared with the value intended to be written.
An error is detected if the two values do not match. However,
the drawback of this technique lies in the significant performance
overhead incurred by checker read, as checker read can increase
memory contention and block demand reads even when demand
reads are prioritized over both writes and checker reads. As Fig.1
shows, verify-after-write can degrade the performance by 14.2% on
average (detailed system configuration can be found in in Table 1).

Another option to detect PCM stuck-at faults is to use error-
correcting code (ECC). Using in-memory ECC to detect error, no
additional checker reads will be added after writes. However, there
are two reasons why in-memory ECC is not commonly adopted
for detecting and correcting stuck-at faults. 1) Using in-memory
ECC for both hard- and soft errors can reduce the effectiveness
of the ECC code protecting against soft errors when hard error
rate increases [33, 42]. And 2) recent study [11] shows that ECC
redundancy bits tend to have an average of 2× of bit flip rate as
compared to data bits. For applications such as libquantum [6], ECC
bits flip rate is 23.98× higher than it is in the data bits. Therefore,
the unmatched bit flip rates make dedicated ECC storage cells wear
out much faster than the data storage cells they are protecting.

The goal of the proposed design is to support PCM stuck-at-faults
detection without performance impact from verify-after-write and
endurance issue from in-memory ECC. The proposed mechanism
is designed based on the following two observations. 1) It is un-
necessary to detect stuck-at faults after every memory read. This
is because stuck-at faults can be detected only after new writes.
Detecting once after each write would be sufficient. 2) ECC re-
dundancy bits do not have to be stored permanently in dedicated
storage. The ECC redundancy bits can be deleted after the first
read accomplishes the detection of stuck-at faults of the last write.
Based on these insights, this paper proposes a new lightweight
stuck-at-fault detection mechanism that uses an ECC cache to store
temporary ECC redundancy bits for stuck-at fault detection. To
the best of our knowledge, this is the first work addressing the

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Chao Zhang, Khaled Abdelaal, Angel Chen, Xinhui Zhao, Wujie Wen, and Xiaochen Guo

reliability and performance trade-off for stuck-at fault detection.
The key features and novelties of the purposed ECC cache are listed
as follows:

• ECC cache has a low performance overhead and only issues
checker read when it is not blocking demand reads.

• ECC cache does not introduce new endurance issue because
it uses on-chip SRAM to store the temporary ECC bits.

• ECC cache deletes ECC entries after one-time detection,
which are proactively issued when not interfering with de-
mand reads.

• ECC cache is orthogonal and complementary to existing
works [13, 17, 29, 33, 36, 42, 43] on error correction for PCM.

2 BACKGROUND
This section summarises PCM reliability issues and existing works
on fault tolerance for PCM.

2.1 Hard Errors in PCM

Top Electrode

Bottom Electrode

(a) Healthy cell

Crystalline
GeSbTe

Heater
(resistor)

Active
area

Top Electrode

Bottom Electrode

(b) Stuck-at-1 cell

Ge Depletion
No longer

Programmable

Top Electrode

Bottom Electrode

(c) Stuck-at-0 cell

Detachment
of heating
electrode

Figure 2: PCM cell and stuck-at-fault.

A PCM storage cell is a sandwich of a phase-change material
(chalcogenide, typically GeSbTe) between two electrodes (Figure 2
(a)). The resistance of the cell depends on the phase of the chalco-
genide material. After initial heating above the melting point, pass-
ing a high current through the heater for a relatively long time
will cool down the cell slowly and hence crystallize the chalco-
genide material and sets the cell into a low resistance state, which
represents a logical ‘1’. If a short pulse is applied after the initial
heating, the cell is cooled down rapidly, which results in a logical
‘0’ state. A PCM cell can be programmed into partially amorphous
and partially crystalline as well, which can be used to implement
multi-level cell (MLC) that defines multiple resistance ranges for
storing multiple bits in one cell. This work focuses on binary PCM
cell (SLC).

The main source of hard errors is stuck-at fault in PCM, as
the cell is at a certain permanent state. A PCM cell can either
stuck-at high or low resistance after repeated writes. A stuck-at-
1 fault (Figure 2 (b)) can be attributed to the overheating of the
GST material during programming. When the generated heat is
extremely high during programming, the chalcogenide material
might intermix with the adjacent material and thus destroying its
physical characteristics [26]. In such circumstances, Ge depletion
is no longer programmable and the cell will continuously exhibit
low resistance. Hence, the PCM cell will permanently have a 1
value. A stuck-at-0 fault can happen after the heating element is
exposed to different amounts of electric current repeatedly. The
heating element can be detached from the phase-change material
after frequent expansions and contractions of the heating element,
which leaves an open circuit (Figure 2 (c)). The stuck-at fault issue
is a fundamental challenge for PCM. PCM capacity decays faster
when used as the main memory, where it experiences more frequent
writes.

2.2 Soft Errors in PCM
A PCM cell as a resistive device is immune to alpha particle-induced
soft errors. But other factors can lead to soft errors in PCM. Resis-
tance drift is identified as the major source of PCM soft errors. The
reason is the meta-stable nature of the amorphous phase. Sudden
cooling of the PCM cell can trigger phase-change. The resistance
of the cell continues to drift high for a certain time, which is a
resistance drift high error. At the same time, low crystallization
of the phase change material at room temperature degrades the
cell resistance over time. This type of long-term resistance drifts
(typically over several days) can be easily addressed by periodically
refreshing the resistance of the cells. Short-term drift can be prob-
lematic in MLC PCM, which is not the focus of this paper. For SLC
PCM, resistance drift is not a major reliability concern [2, 25].

2.3 Hard Error Detection in PCM
A commonly adopted hard error detection mechanism in PCM is
verify-after-write [17, 29, 33, 36, 42]. The basic idea is to issue an
additional read (checker read) after each writes. If the value read
from the PCM array matches with the value intended to be written,
the write was successful and no hard errors were detected. This
kind of checker reads introduces performance overhead. Note that
checker read is more expensive than normal column read because
it requires reading from the array, which is essentially an activation
(reading from the array to row buffer) followed by a column read
(reading from the row buffer). To ensure every checker read reads
from the PCM memory array, an auto-precharge is used after every
writes for both the baseline and the proposed architecture. An open-
page after reads and close-page after write paging policy is used
(see Section 4). The direct reason for the performance degradation
is that it can block demand reads especially for write-intensive
applications. There are two ways to implement the checker read:
integrated and decoupled. The integrated checker read adds latency
directly to its corresponding write and a combo memory command
is issued to perform both the write and the checker read. In this
case, the likelihood of encountering and blocking a demand read is
higher. The decoupled checker read is implemented by inserting
the check read to the end of the read queue in thememory controller
to prioritize demand reads. This would add pressure to the read
queue. Moreover, each write value has to be temporarily stored
in the memory controller after issuing the write to wait for the
comparison when the corresponding checker read value returns.
The increased read queue pressure can block demand reads from
entering the queue and hence degrades performance as well.

ECC is widely used to detect and correct errors in DRAM. Dedi-
cated storage (typically 12.5% in ECC-DIMM) is required to store
ECC redundancy bits. ECC syndrome is calculated to check if the
value of any bits in the codeword (including the redundancy bits)
has been changed. A commonly used ECC for protecting DRAM
from soft errors is a single-error correction double-error detection
(SECDED) code. Recent Study [44] shows the SLC PCM hard er-
rors are orders of magnitude higher than the soft errors. Using
in-memory ECC to cover both soft and hard errors requires much
stronger ECC than protecting soft error only, which leads to a
higher chip area overhead. Another reason that makes ECC codes
in PCM inefficient is that the ECC bits tend to have a higher bit
flip rate, which is costly in PCM with a limited write lifetime (ECC
is a checksum to data bits). Y. Du et al. [11] claims that ECC bits
in a single error correction double error detection (SECDED) code
have nearly twice bit flip rate as compared to it is in the data bits.
Therefore, PCM cells dedicated for storing ECC bits will be worn
out twice as fast as the protected PCM cells storing data. After the
ECC chip has worn out, the PCM will lose stuck-at-faults detection.

ECC Cache: A Lightweight Error Detection for Phase-Change Memory Stuck-At Faults ICCAD ’20, November 2–5, 2020, Virtual Event, USA

Both of these two reasons make in-memory ECC impractical for
PCM stuck-at-fault protection.

2.4 Hard Error Correction in PCM
To mitigate the PCM lifetime limitation, some of the prior work
proposed wear-leveling to spread the writes across memory cells
uniformly [31, 40]. This scheme can limit the write frequency to
the same subset of cells with a balanced distribution of the write
traffic, and hence allows the memory capacity to gradually decay.
However, the endurance limit of chalcogenide material for a PCM
cell still exists, and wear-leveling alone can not solve this problem.

A common approach to mitigate the impact of the stuck-at faults
is to remap the faulty memory location to a healthy cell location.
The finer the granularity of this remapping, the slower the memory
capacity decays. For example, error correction pointer (ECP) [33]
can remap each faulty bit and correct up to 6 bits in a 64B line.
Pointers can be used for fast access to an entire page as well, for
which healthy cells within a faulty page might get retired early. ECP
requires a 61-bit storage overhead for each 64B block. Compared
to ECP, PAYG [29] provides a stronger error correction scheme,
which uses a hierarchical sets of ECPs to allow sharing to support
variations in the number of failures. DRM [17] and Zombie [3] pairs
the faulty pages and recycles pages with stuck-at faults to form
healthy pages. Other methods like SAFER [36], RDIS [24], and Aegis
[13] are proposed to provide partition and inversion mechanisms
for reusing the stuck-at faults in each data block based on the fact
that writing a ‘1’ to a stuck-at-1 cell is not an error and vice versa
for a ‘0’.

3 KEY IDEAS AND OVERVIEW
This section presents the key ideas and an overview of the proposed
ECC cache design.

Use checker read to reduce storage overhead, whenwrites
are not blocking demand reads.Themain drawback of the verify-
after-write approach is the potential to block demand reads. How-
ever, not all checker reads block demand reads. For those that do
not block demand reads, they can be issued immediately after the
corresponding writes. When the read queue is empty or when the
checker read is going to a bank that has no pending demand reads,
the checker read can be added to the read queue. A detailed dis-
cussion about when to issue a checker reads immediately after
writes is in Section 5.3. Write cancellation and write pausing [30] is
also useful to prioritize the demand reads over writes and checker
reads. In the proposed ECC cache, a new decoupled checker read
is always inserted, and a checker read and write can be treated in
two iterations, thus pending read can be served at the end of each
write iteration.

Use temporary ECC to detect and correct stuck-at faults
when writes are blocking demand reads. The proposed work
uses a serially concatenated ECC, which can detect stuck-at faults
in both data bits and in-memory ECC bits. The in-memory ECC is
used for only soft error. As shown in Figure 3, a demand write will
first check whether issuing a checker read will block demand reads.
If it would not block demand reads, a checker read will be added
to the end of the read queue. For the checker read that may block
demand reads, the ECC cache will try to allocate an entry to store
the ECC bits of the corresponding write value. However, the on-
chip ECC cache has limited space. If the cache set is full, a checker
read has to be inserted into the read queue. Every demand memory
access checks the ECC cache. On a read hit, the demand read can
serve as a free checker read and the returned value will be used in
combination with the stored ECC bits to calculate syndrome. The
ECC entry can be deleted after this read hit. Since these checker
reads compare syndrome rather than values, this type of read is

Write request

Find ECC cache
set

Issue decoupled
checker read

Cache
set full?

Write ECC entry

NoYes

Yes

No

Checker
read block demand

read?

Figure 3: A flowchart of when to issue checker reads.

Error Correction
Pointer
(ECP)
Block

Memory Controller

ECC
Cache

Data

DC

DC : ECC deletion controller IC: ECC insertion controller

Concatenated
ECC Encoder

Concatenated
ECC Decoder

Write QueueRead Queue

IC

In-memory ECC

Main Memory

Figure 4: The proposed architecture with ECC cache.

named as deletion read. On a write hit, the old ECC entry can be
deleted as the new write can use the new ECC to detect stuck-at
faults. This work chooses to use a hardware ECC cache instead
of in-memory because a small hardware cache has shorter access
latency, lower energy consumption, and no endurance issue.

Delete ECC entries proactively when not hurting perfor-
mance. The limited size of the on-chip ECC cache can reduce
the effectiveness of the proposed stuck-at fault detection scheme.
Incoming writes must issue checker reads regardless of the per-
formance overhead if the ECC cache is full. (Section 5.1). To make
better use of the ECC cache, a proactive deletion scheme is required.
The deletion rate managed by the deletion controller in Figure 4
should match the insertion rate such that the ECC cache can allo-
cate space for writes when needed. Deleting an ECC entry requires
issuing an extra deletion read and calculating the syndrome using
the returned read value and the ECC bits. Therefore, deleting ECC
entry needs to be careful not to interfere with demand reads. The
proposed architecture leverages bank-level parallelism to delete
ECC (Section 5.4).

Use existing techniques for remapping faulty bits after
stuck-at faults are detected.The proposed failure detectionmech-
anism is orthogonal to existing error correctionmechanisms [27, 34]
that remap faulty bits to healthy memory cells. In Figure 4, ECP
is used for illustration without loss of generality. The proposed
stuck-at fault detection can be combined with any existing stuck-at
fault correction and recovery technique. Upon detecting an error,
the in-cache ECC entry is used for the first-time correction. The
ECC entry can be deleted after correction because the faulty bit
will be remapped to a healthy cell for future uses.

As shown in Figure 4, a small ECC cache (64KB) is added into
the memory controller, which is used for storing ECC entries for
stuck-at fault detection and correction. Each of the cache entry is
an 8B ECC code. An insertion controller (IC) determines whether
to add a checker read into the read queue or to add an ECC entry
into the ECC cache. Unlike conventional caches that replace cache
entries when the cache set is full, the proposed ECC cache uses a
deletion controller (DC) to determine when and which ECC entries
to delete to minimize performance impact (Section 5.4). Section 6.5
will discuss which ECC code to use to satisfy a typical reliability
requirement. This work assumes an SRAM-based ECC cache in the
evaluation. PCM can be used for persistence applications. When

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Chao Zhang, Khaled Abdelaal, Angel Chen, Xinhui Zhao, Wujie Wen, and Xiaochen Guo

crush consistency is required, the ECC cache can be made per-
sistent by using a battery to backup the ECC cache upon power
failure similar to other prior work [1, 8, 45]. The ECC cache can
also be implemented using non-volatile memory technologies such
as embedded STT-MRAM [21] to support persistence. However,
supporting persistence is not the focus of this work.

4 EXPERIMENTAL SETUP
The proposed ECC cache design choices are made according to
the insights from experiments. Before presenting the details of the
design, this section first describes the experimental setup.

4.1 Simulation infrastructure
This work uses ZSim [32] in combination with NVMain 2.0 [28] to
perform execution-driven and cycle accurate simulation. CACTI
7.0 [4] is used for the ECC cache area, latency, and power model-
ing. Cadence Genus Synthesis Solution [7] is used to analyze the
insertion controller and deletion controller of the ECC cache. Mc-
PAT [22] is used to estimate the entire on-chip energy consumption.
The area is estimated based on FreePDK45nm [38] standard cell
library, and is scaled to 22 nm by SPECTRE circuit simulations,
which are the same as [15]. This work uses the Bose-Chaudhuri-
Hocquenghem (BCH) code [23]. For BCH encoder and decoder, we
adopt a parallel implementation of encoder from [18] and decoder
from [39], which is similar in prior work [16].

Table 1: Baseline Configurations.
4 OoO cores, 2.6 GHz

CPU 32KB, 8-way private L1d and L1i cache,
128KB, 8-way private L2 cache
2MB, 16-way shared last-level cache (LLC)
4 GB PCM, DDR3 compatible 400MHz

Memory 1 channel, 1 rank per channel, 4 banks per rank
tRCD/tWR/tRP = 99, 150, 70ns
Scheduling policy: FR-FCFS_WQF

Memory Page policy: open-read/close-write page policy
Controller Write/Read queue size: 32/32 entries

Write high/low threshold: 85%/50%

An open-page after read and close-page after write policy is
used to optimize for applications with good spatial locality. The
close-page after write policy uses auto-precharge, which ensures
that checker reads can always read from the memory array instead
of hitting in the row buffer. PCM requires a large write driver, hence
the write throughput is typically limited to one column write per
bank [12]. The close-page after write policy can also limit the write
throughput for a realistic PCM device. An FR-FCFS_WQF sched-
uling policy is used with a dedicated write queue. A write queue
draining mechanism is adopted to prioritize reads. The system will
only switch to writes when the write queue occupancy is greater
than a high threshold. And it will switch back to checker read when
1) write queue is empty or 2) read queue is not empty and write
queue occupancy is below a low threshold. The PCM timing con-
straints come from Samsung PRAM with diode-switch cell array
prototypes [9] and the adaptive precharge scheme proposed by J.
Ko et al. [20]. A statistical simulation is performed to estimate the
reliability of the proposed design (Section 6.5).

Table 2: Applications.
Suite Type Benchmark (write throughput in MB/s)

PARSEC 3.0 Multi-thread bodytrack(8.34), canneal(12.14),
dedup(8.35), ferret(9.19)

SPEC 2017 FP Multi-program bwave(12.04), cactubssn(8.43), cam4(13.08)
imagick(9.83), rom(12.40), wrf(6.62)

SPEC 2017 INT Multi-program deepsjeng(12.00), leela(4.94), mcf(2.01)
omnetpp(6.58), perlbench(8.26), xalancbmk(11.13)

SPLASH-2 Multi-thread cholesky(7.42), fft(7.69), ocean_cp(6.12), radiosity(13.3)
volrend(7.97), water_nsquared(3.02), water_spatial(7.37)

4.2 Benchmarks
A total of 22 applications are selected from PARSEC 3.0 [5], SPEC
2017 [10], and SPLASH 2 [41] with no less than 2 MB/s of average
write throughput as listed in Table 2. The peak bandwidth of the
PCM chip is 40MB/s. The first 100 million instructions are used to
warm-up the on-chip caches. In ZSim, a dynamic binary translation
is used to perform per-process fast-forwarding [32], which toggles
per 100 million instructions.

5 THE PROPOSED ECC CACHE
This section first describes the challenge of storing temporary ECC
bits in a small ECC cache. Section 5.2 demonstrates how this design
overcomes the challenge of the limited cache space by utilizing
bank-level parallelism. Section 5.3 and 5.4 discussed the proposed
dynamic insertion and deletion schemes.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

bo
dy
tr
ac
k

ca
nn
ea
l

de
du

p
fe
rr
et

bw
av
e

ca
ct
ub

ss
n

ca
m
4

de
ep

sje
ng

im
ag
ic
k

le
el
a

m
cf

om
ne
tp
p

pe
rlb

en
ch

ro
m w
rf

xa
la
nc
bm

k
ch
ol
es
ky ff
t

oc
ea
n_
cp

ra
di
os
ity

vo
lre

nd
w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia
l

G
EO

M
EA

N

64KB ECC cache Infinite ECC

Figure 5: Finite ECC cache vs. infinite ECC cache (Speedup
over no ECC cache).

5.1 Challenge of Finite ECC Cache Capacity
The proposed on-chip ECC cache is fast and consumes low energy,
which is beneficial for storing temporary ECC entries. To under-
stand the effectiveness of the proposed scheme, an ECC cache with
infinite capacity could set the upper bound. The infinite ECC cache
can achieve an average of 13.4% of the speedup as compared to the
baseline with a verify-after-write detection, close to the ideal sce-
nario, which does not use any checker read. The 0.8% performance
difference (infinite ECC cache vs. no checker read) is due to the
blocking of demand reads after a checker read is issued.

For a 64KB and 16-way set-associative ECC cache, less than 2%
of speedup can be achieved because of its limited size. For write-
intensive applications, the insertion rate is much higher than the
hit deletion rate. The ECC cache is quickly filled up. To store more
temporary ECC entries and reduce the performance impact, the
number of ECC set-full cases need to be reduced. There are different
ways to prolong the effectiveness of the ECC cache. Increasing the
capacity of the cache is the most straightforward but also the most
expensive way. Another approach is to virtualize the ECC cache by
having a backup space in memory. But additional memory accesses
might be needed on ECC cache misses and increases memory traf-
fic. This work uses dynamic insertion (Section 5.3) and proactive
deletion (Section 5.4) to effectively reduce the number of set-full
cases when a write needs to insert an ECC entry.

5.2 Opportunity of No Pending Bank
Checker read or deletion read would have a greater performance
impact if they block demand reads by going to a different row
in the same bank. This work utilizes bank-level parallelism to is-
sue checker reads and deletion reads. We define No Pending bank
(NP bank) as the memory bank that has no pending read requests
waiting in the memory controller queue.

To verify how many NP banks can be utilized, a breakdown of
execution time is shown in Figure 6 based on the configuration in

ECC Cache: A Lightweight Error Detection for Phase-Change Memory Stuck-At Faults ICCAD ’20, November 2–5, 2020, Virtual Event, USA

0%
20%
40%
60%
80%

100%
bo

dy
tr

ac
k

ca
nn

ea
l

de
du

p
fe

rr
et

bw
av

e
ca

ct
ub

ss
n

ca
m

4
de

ep
sje

ng
im

ag
ic

k
le

el
a

m
cf

om
ne

tp
p

pe
rlb

en
ch

ro
m w
rf

xa
la

nc
bm

k
ch

ol
es

ky ff
t

oc
ea

n_
cp

ra
di

os
ity

vo
lre

nd
w

at
er

_n
sq

ua
re

d
w

at
er

_s
pa

tia
l

G
EO

M
EA

N

num of NP banks = 0 num of NP banks = 1
num of NP banks = 2 num of NP banks = 3
num of NP banks = 4 (readQ empty)

Figure 6: Execution time breakdown according to the num-
ber of NP banks.

Tag Index Offset

OffsetBankIDRow ID ColumnID

16 7 6 01563

7 6 0816 91763
Memory

ECC
Cache

Figure 7: Address Mapping in ECC cache and Memory.

Table 1. On average, more than half of the banks are in NP state
even with a block-interleaved address mapping (using LSB of the
address for bankID, see Figure 7). Issuing checker reads to NP banks
has a relatively low impact on demand reads because precharge and
activation of different banks can be done in parallel. Exploiting bank-
level parallelism will benefit both dynamic insertion and proactive
deletions for the proposed ECC cache.

To monitor which banks are in the NP state, each bank has a
counter in the memory controller to keep track of the total number
of pending requests in the read queue (Figure 8). A bank can be
identified as NP state when the corresponding counter is zero.

5.3 Inserting into the ECC cache
Using a static threshold of the read queue occupancy as an indicator
for insertion is useful to reduce the total number of insertions. The
higher the threshold, the lower the insertion rate. However, a high
threshold also reduces performance because a greater percentage
of writes will do a checker read than an ECC cache insertion, which
can have a higher possibility to block demand reads.

Instead of setting a static threshold, the proposed design adopts a
dynamic insertion policy, which adds a checker read to read queue
when the target bank is currently a NP bank. This insertion method
is named as No pending insertion in this paper.

For the proposed insertion scheme, the decision on not to insert
to ECC cache is made under the following conditions, which re-
quires adding a checker read to the read queue. First, a checker
read is added if the read queue is empty. Second, a checker read
is added if it is going to an NP bank, which can be easily known
with the help of an NP bank state monitor. If neither of the above
conditions is true, an ECC cache lookup is performed. On a cache
hit, the ECC bits are updated and no immediate checker read will
be issued. On a cache miss, a new ECC entry is inserted into the
ECC cache if the cache set is not full. When the cache set is full, a
checker read is added to read queue.

5.4 Deleting from the ECC cache
To reduce the set-full cases, deleting from ECC cache, and saving
space for future writes is important.

5.4.1 Hit Deletion. A simple deletion policy would be to delete an
entry on each demand access hit. Hit deletion is the cheapest dele-
tion because no extra requests are generated. Directly calculating
syndrome based on the data read from a demand read can serve the
purpose of a checker read for the last write to the same location. For
example, if a demand read to address A hits the ECC cache, there is

an earlier write to address A pending to be calculated. The memory
controller can delete the ECC entry after calculating the syndrome
using both the returned read value and the ECC bits in the ECC
cache. However, less than 5% of ECC entries can be deleted through
hit deletion based on our observation in the evaluated benchmarks
(Figure 12). The deletion rate can be lower than the insertion rate
with hit deletion only. Most of the writes will encounter set full
condition and have to add a checker read. More proactive deletion
methods are required to increase the deletion rate.

Address 32

…
Address 4

Address 3

Address 2

Address 1

ReadQueue SF: set full flag

CB1

CB2

CB3

CB0

ECC cache

EN_ID0

EN_ID1

EN_ID2

EN_ID3

EN_ID0

Pr
io

rit
y

En
co

de
r0

1
0
0

ECC set 0
ECC set 4

…
ECC set 1020

EN_ID3Pr
io

rit
y

En
co

de
r1

0
0
0

ECC set 3
ECC set 7

…
ECC set 1023

SF12

3 4

5

CB0: counter for num‐
ber of read requests to
bank 0 in read queue

EN_ID0: enable idle
bank deletion to bank 0

NOR

NOR

Figure 8: No pending bank deletion.

Bank X in NP
state?

No Yes

Has row
open?Do not do NP deletion

Address in
open row hit
In cache ?

Delete ECC entries
and send deletion

reads to read queue

Yes

Yes

No

No

Entries from
bank 0 in full

set?
No

Yes

Delete MRU ECC entries
and send deletion reads

to read queue

Figure 9: No pending bank deletion with row buffer hit opti-
mization.
5.4.2 No Pending Deletion. NP bank deletion is a relatively cheaper
mechanism to do proactive deletion since sending deletion read to
an NP bank has a lower performance impact. Those deletion reads
can be served in parallel with demand reads by utilizing bank-level
parallelism. In this case, there are lots of opportunities to delete
ECC entries from NP banks and those checker read latency will be
hidden through bank-level parallelism.

As shown in Figure 8, 1○ CB0 is the counter that counts pending
requests in the read queue. The value of the counter increments or
decrements whenever a request arrives or departs. 2○ EN_ID0 is
a one bit enable signal for bank 0’s NP bank deletion. EN_ID0 is
flipped to 1 when the CB0 is equal to zero, which allows an NP bank
deletion read to be added if there is an ECC cache entry protecting
a block in bank 0. When there are multiple choices, a deletion is
selected according to the set full conditions. The proposed ECC
cache uses bankID as part of the cache index, so the entries in the
same cache set are mapped to the same memory bank. 3○ Each set
in ECC cache has a set full bit to indicate whether the set is full.
Only full sets will be considered for NP bank deletion to make space
for future ECC cache insertions. 4○ If any ECC cache set is full and
EN_ID0 is also true, the MRU (most recent used) entry from the
full set will be deleted by sending a deletion read to the read queue.
If there are N banks in total, N priority encoders are needed. 5○
Now that the deletion read to bank0 is added into the read queue.

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Chao Zhang, Khaled Abdelaal, Angel Chen, Xinhui Zhao, Wujie Wen, and Xiaochen Guo

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

bo
dy

tr
ac

k

ca
nn

ea
l

de
du

p

fe
rr

et

bw
av

e

ca
ct

ub
ss

n

ca
m

4

de
ep

sje
ng

im
ag

ick

le
el

a

m
cf

om
ne

tp
p

pe
rlb

en
ch

ro
m w
rf

xa
la

nc
bm

k

ch
ol

es
ky fft

oc
ea

n_
cp

ra
di

os
ity

vo
lre

nd

w
at

er
_n

sq
ua

re
d

w
at

er
_s

pa
tia

l

GE
O

M
EA

N

Sp
ee
du

p

CheckerRead ECC-Hit Del ECC-Hit+NP Deletion ECC-Hit+NP Del (row buffer optimized) Infinite ECC Cache NoCheckerRead

Figure 10: Normalized performance comparison.

Bank0 is no longer an NP bank until this deletion read is served. The
EN_ID0 will be flipped back to 0 to block more NP bank deletions
from bank 0 to the read queue. Because the demand reads to bank
0 arrive after a deletion read is added, the performance impact will
be small.

5.4.3 No Pending Deletion with row buffer hit optimization. A dele-
tion read to the NP bank can be served in parallel with demand
reads. The total amount of deletion reads not only depends on the
time window but also depends on the latency of each deletion read.
The shorter the latency for each deletion read, the more ECC entries
that can be deleted.

One optimization for the NP bank deletion is to find deletion
reads that can hit in the row buffers. Accessing data stored in the
row buffer is faster and costs less energy. A bank in NP state may
still have a row open as long as it is not precharged. Sending deletion
reads to the open row can further increase the deletion rate. The
flowchart of an NP bank deletion with a row buffer hit optimization
scheme is shown in Figure 9.

If there is any bank identified as an NP state and has row open, a
deletion read going to the open row will have the highest priority to
the read queue. Then, the address in the open row will be searched
by using the same row, bank, rank, and channel ID. Similar as what
is shown in Figure 8 3○, ECC entry deletion going to the open
row will be read out by a priority decoder. At last, the entry will
be deleted and a corresponding deletion read is added to the read
queue for stuck-at faults detection.

6 EVALUATION
This section presents the evaluation of performance, energy cost,
hardware overhead, and the reliability of the proposed ECC cache.

6.1 Performance
To understand the performance of the ECC cache, speedup contri-
bution, insertion breakdown, deletion breakdown, and the lifetime
of the ECC entries are discussed.

Speedup Contribution. Figure 10 shows the speedup of adding
each of the following deletions features one at a time: 1) hit deletion,
2) NP bank deletion, and 3) row buffer hit optimization. All of the
limited capacity ECC cache configurations use the same insertion
policy described in Section 5.3.

The baseline is a design with verify-after-write. After adding
a 64KB, 16 set way-associative ECC cache with hit deletion, the
performance can be improved by an average of 2.8%. This is because
hit deletion by itself is not sufficient to make space for future writes.
Only a few demand accesses will hit in the ECC cache, hence the
ECC cache is quickly filled up. As a result, most of the attempted
insertions to the ECC cache fail due to set full. For the evaluated
benchmarks, 98.8% of checker reads are added due to the ECC cache
set full. This also proves that a proactive deletion is necessary to
achieve a high deletion rate. After adding normal NP deletion, the
performance on an average can be improved by 8.8%, which is
much higher than hit deletion only. This is because the entries in

the ECC cache can be deleted by sending a deletion read to NP
banks, which utilizes the bank-level parallelism to minimize the
negative performance impact on demand reads. After adding NP
bank deletion, only 4.9% of the writes would send a checker read
because of set full conditions, which means almost all of the writes
can be successfully inserted into an ECC cache entry. Moreover,
optimizing the latency for NP deletion with row buffer hit can have
an average of 9.5% of speedup over the baseline and only 1.37% of
writes will add checker reads due to set full (Figure 12).

0
0.2
0.4
0.6
0.8

1

bo
dy
tr
ac
k

ca
nn
ea
l

de
du

p
fe
rr
et

bw
av
e

ca
ct
ub

ss
n

ca
m
4

de
ep

sje
ng

im
ag
ic
k

le
el
a

m
cf

om
ne
tp
p

pe
rlb

en
ch

ro
m w
rf

xa
la
nc
bm

k
ch
ol
es
ky ff
t

oc
ea
n_
cp

ra
di
os
ity

vo
lre

nd
w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia
l

G
EO

M
EA

N

No
rm

al
ize

d
To

ta
l N

um
be

r o
f

EC
C

Ca
ch

e
In

se
rt

io
ns

Figure 11: Insertion reduction after NP detection.

0%
20%
40%
60%
80%

100%

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fe
rr

et
bw

av
e

ca
ct

ub
ss

n
ca

m
4

de
ep

sje
ng

im
ag

ic
k

le
el

a
m

cf
om

ne
tp

p
pe

rlb
en

ch
ro

m w
rf

xa
la

nc
bm

k
ch

ol
es

ky ff
t

oc
ea

n_
cp

ra
di

os
ity

vo
lre

nd
w

at
er

_n
sq

ua
re

d
w

at
er

_s
pa

tia
l

G
EO

M
EA

N

NP checker read ECC insertion
ECC set full checker read Read Q empty chekcer read

Figure 12: Insertion Breakdown.

Insertion Breakdown. As described in Section 5.3, there are
four possibilities for each demand write: 1) read queue is empty and
adds a checker read to read queue. 2) checker read will go to an NP
bank and hence add a checker read (read queue not empty). 3) add a
checker read because the ECC cache set is full, and 4) insert an ECC
entry into the ECC cache and do not need a checker read but might
require a deletion read in the future. For the read queue empty
case, the checker read can only block demand reads if demand
reads arrive after checker read is issued. The performance impact
of this case is the lowest. However, for the selected write-intensive
applications, less than 1.2% of the checker reads will be added into
the read queue when it is empty. Issuing checker reads to NP banks
helps to reduce the total number of insertions to the ECC cache
without blocking demand reads. This reduces the total number of
ECC cache entry insertions by an average of 27% (Figure 11). This
optimization can reduce the ECC cache energy with nearly zero
impact on system performance.

An average of 20.49% of the writes adds checker read to NP banks,
which has a very low negative performance impact. ECC set full case

ECC Cache: A Lightweight Error Detection for Phase-Change Memory Stuck-At Faults ICCAD ’20, November 2–5, 2020, Virtual Event, USA

is a condition that could have themost negative performance impact
because checker reads must be added regardless of whether they
will block demand reads. After using NP Bank deletion with row
buffer hit optimization, only 1.37% of the writes add checker reads
due to the set full condition. Given the fact that ECC cache is small
and set-associative (64KB, 16-way associativity), the low percentage
of set full condition shows that the proposed deletion scheme is
effective and can match with the insertion rate. Last but not least,
more than 76% of the writes issue ECC cache insertions rather than
checker reads, effectively preventing demand read blocks.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fe
rr

et
bw

av
e

ca
ct

ub
ss

n
ca

m
4

de
ep

sje
ng

im
ag

ic
k

le
el

a
m

cf
om

ne
tp

p
pe

rlb
en

ch
ro

m w
rf

xa
la

nc
bm

k
ch

ol
es

ky ff
t

oc
ea

n_
cp

ra
di

os
ity

vo
lre

nd
w

at
er

_n
sq

ua
re

d
w

at
er

_s
pa

tia
l

G
EO

M
EA

N
NP Del NP Del (row buffer hit optimized) Hit Del

Figure 13: Deletion Breakdown (normalized). Left bars: with-
out row buffer hit optimization; right bars: with row buffer
hit optimization.

Deletion Breakdown. An ECC entry can be deleted from ECC
cache in three ways: 1) when a demand read hit the ECC cache the
demand read can serve as a deletion read; 2) NP bank deletion that
detects NP bank state, deletes an entry from a full set and adds a
deletion read; and 3) NP bank deletion that sends a deletion read to
an open row. Deletion breakdowns for ECC cache with and without
row buffer hit optimization are presented in Figure 13. For the tests
without row buffer hit optimization, hit deletion takes an average of
1.03% of the total deletions. For applications like mcf, cholesky, and
fft, nearly 15% of the deletions are from hit deletion, still not effective
enough to make space for future insertions. More than 98% of the
deletion are from NP bank deletion, which is why the performance
can be significantly improved by adding NP bank deletion. For the
tests with row buffer hit optimization, an average of 8.7% of the
total deletions are row buffer hit deletions. The number of other
NP bank deletions stays almost the same and the total number of
deletions is increased by 7.2%. Given the fact that a bank does not
stay in the NP state for too long, reducing the latency of deletion
read through row buffer hit optimization can increase the total
number of deletions.

1.E+05

1.E+06

1.E+07

bo
dy
tr
ac
k

ca
nn
ea
l

de
du

p
fe
rr
et

bw
av
e

ca
ct
ub

ss
n

ca
m
4

de
ep

sje
ng

im
ag
ic
k

le
el
a

m
cf

om
ne
tp
p

pe
rlb

en
ch

ro
m w
rf

xa
la
nc
bm

k
ch
ol
es
ky ff
t

oc
ea
n_
cp

ra
di
os
ity

vo
lre

nd
w
at
er
_n

sq
ua
re
d

w
at
er
_s
pa
tia
l

G
EO

M
EA

NAv
er

ag
e

EC
C

en
tr

y
lif

et
im

e
(c

yc
le

s)

Figure 14: Average ECC lifetime in cycles.

ECC Entry Lifetime. A key difference between the proposed
ECC cache-based stuck-at fault detection scheme and a conven-
tional verify-after-write scheme is that writing ECC entries delays
the detection. Therefore the system detects the stuck-at faults later
than the conventional design. The lifetime of an ECC entry is the
cycle count from its insertion to its deletion. As shown in Figure 14,
most of the applications have an average of ECC entry lifetime
around a million cycles, which is less than 1ms under a 2.6 GHz fre-
quency, which does not influence reliability significantly (Section

6.5). Write requests are not on the critical path, and deferred write
with write queue draining already delays write requests. In fact, the
lifetime of the ECC entries shows the buffering effect for stuck-at
fault detection to allow flexible scheduling. Note that using ECC
cache to delay stuck-at fault detection is more storage efficient as
compared to verify-after-write. This is because verify-after-write
needs to buffer the entire block, whereas ECC bits are much smaller
(typically 12.5%) than the block data.

6.2 Energy Consumption
The ECC cache is not performance-critical. Sequentially accessing
tag and data array can help to reduce the energy consumption
from tag lookup. Adding a dedicated ECC cache for stuck-at faults
detection will lead to higher power consumption. We break down
energy consumption into five parts: 1) cache lookup dynamic energy
for every demand access, 2) NP deletion cache lookup dynamic
energy, 3) ECC cache insertion dynamic energy, 4) insertion and
deletion controller dynamic energy, 5) leakage energy of both the
ECC cache and modified memory controller logic.

To analyze the additional energy overheads, an energy break-
down is shown in Figure 15. On average, nearly half of additional
energy overhead is from leakage energy, which is expected for a
deeply scaled technology node. Demand access lookup, NP dele-
tion lookup, ECC cache insertion, and insertion/deletion controller
consume an average of 19.9%, 10.73%, 19.46%, and 4.54% of the total
additional energy respectively.

0%
20%
40%
60%
80%

100%
bo

dy
tr

ac
k

ca
nn

ea
l

de
du

p
fe

rr
et

bw
av

e
ca

ct
ub

ss
n

ca
m

4
de

ep
sje

ng
im

ag
ic

k
le

el
a

m
cf

om
ne

tp
p

pe
rlb

en
ch

ro
m w
rf

xa
la

nc
bm

k
ch

ol
es

ky ff
t

oc
ea

n_
cp

ra
di

os
ity

vo
lre

nd
w

at
er

_n
sq

ua
re

d
w

at
er

_s
pa

tia
l

G
EO

M
EA

N

Demand access lookup dynamic NP deletion lookup dynamic
ECC insertion dynamic Leakage
Insertion and deletion logics dynamic

Figure 15: Energy overhead breakdown.

As compared to the total on-chip energy consumption, the ECC
cache total energy overhead is negligible (ECC cache is at memory
controller). This has two reasons: 1) the total amount of the cache
lookup depends on the number of memory reads and writes, which
is much lower than the number of on-chip cache accesses (less than
1% of L1 dcache accesses). Since the on-chip caches have a larger
capacity, they can filter out most of the off-chip traffics, which
also means relatively fewer accesses to the ECC cache. 2) The ECC
cache is much smaller as compared to the LLC and therefore the
leakage power is relatively small as well. The optimized insertion
scheme can also effectively reduce ECC cache energy. As a result,
the proposed ECC cache-based stuck-at fault detection scheme has
low energy overhead.

Table 3: Area Breakdown of the ECC Cache Design.

ECC ECC Insertion and Total
Logic Cache Deletion Controller Area
0.410 0.107 0.005 0.522 (𝑚𝑚2)

6.3 Area Overhead
The proposed architecture adds the following hardware structures
to the memory controller: 1) a 64KB ECC cache, 2) insertion and
deletion controller to handle ECC entries in cache, and 3) a set of
6EC7ED BCH ECC encoder and decoder. The total area overhead is
0.522𝑚𝑚2, which occupies 1.13% of the processor die (46.19𝑚𝑚2).

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Chao Zhang, Khaled Abdelaal, Angel Chen, Xinhui Zhao, Wujie Wen, and Xiaochen Guo

Note that prior work like Free-p [42] also suggests using BCH code
for error detection and correction, which requires similar overhead
for BCH encoder and decoder.

6.4 ECC Cache Size

1.00

1.05

1.10

1.15

0

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

2M
B

In
fin

ite

Sp
ee
du
p

Figure 16: Speedup for different ECC cache sizes. Set-
associativity is 16 for all of the limited size configurations.

Increasing the cache capacity can reduce the set full checker
reads by providing more space for insertions. A study on different
ECC cache sizes (2KB-2MB) is presented in Figure 16. An infinite
ECC cache has a speedup of 13.4% over the baseline with verify-
after-read. ECC cache capacity over 64KB can achieve better per-
formance but has a diminishing return. A 4.8% speedup can still
be achieved with a small 4KB 16-way-set associative ECC cache.
Increasing ECC cache capacity can easily reduce set full cases that
may block demand reads. However, adding a large ECC cache is
expensive for limited space on the processor die. According to the
sensitivity study the optimum size of proposed ECC cache would
be 16 - 128 KB to achieve the best trading offs between performance
and area overhead.

6.5 Reliability
Memory failure simulation is challenging because it is infeasible to
simulate the real operations of memory over a full lifetime. For the
stuck-at fault detection, soft errors can contribute to false positive,
which means a soft error can be identified as a hard error because
the detection method cannot distinguish among different types of
errors. To reduce the false positive, writes can be performed again
to confirm whether the detected error is due to stuck-at faults. The
performance overhead is expected to be low if the failure rate is
very low. The limited endurance is the root cause of stuck-at faults.
If storage cell endurance variation follows a normal distribution
and the writes are evenly distributed, the stuck-at fault induced
bit error rate would increase as the device ages. As the device ages
the reliability gets worse and stuck-at faults will dominate the bit
error rate. Hence, this work builds a failure model focusing on
stuck-at faults by first assuming the storage cell endurance follows
a normal distribution with a mean of 108 write operations, and a
0.25 coefficient of variance (𝛿 in equation. 1) is used similar to many
prior work [3, 17, 33, 42]. With more than 50% of capacity decay
after nine years [33, 42], the failure model only includes the first
nine years result. The probability that a random cell has a stuck-at
faults error at the 𝑡 th write is

𝑃 (𝑡) =
∫ 𝑡

−𝑜𝑜

1
√
2𝜋𝛿

𝑒

(𝑡/lifetime−1)2
2𝛿2 (1)

, which is a cumulative normal distribution function. To estimate
the uncorrectable error rate, a binomial test is performed as shown
in equation. 2

𝑃 (𝑋 = 𝑘) =
(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 (2)

, in which n is the length of the codeword, k is the number of
errors, p is the error probability from equation 1. Therefore, the

uncorrectable error probability for SECDED is when the received
data have more than one errors (P(X>1)).

1.E+04
3.E+04
5.E+04

0 1 2 3 4 5 6 6 7 8 9Fa
ilu

re
s i

n
tim

e
(F

IT
) r

at
e

pe
r b

ill
on

ho

ur
s p

er
 M

b

years
No SECDED 3EC4ED 6EC7ED

1.E+08
1.E+10
1.E+12

Figure 17: Uncorrectable FIT for different ECC codes in ECC
cache. Endurance in number of writes is converted into time
assuming a perfect wear-leveling and the write throughput
is 20%1of the PCM peak bandwidth (40Mb/sec per chip).

The failure in time (FIT) is a standard metric to measure the
reliability of a device. FIT refers to the total number of failures in
one billion device hours. Recent studies on DRAM soft error rate
show an average of 25,000 - 75,000 FIT per Mbit [35, 37]. Given
the fact that PCM is robust against particle induced soft errors and
negligible resistance drift errors, the soft error rate of SLC PCM
is expected to be lower than the DRAM. In the proposed work, a
small static soft error rate is added into the failure model, i.e., 25,000
FIT per Mbit. Unlike ECC, the checker read can detect and correct
any number of errors within a block. Therefore, the proposed ECC
cache can have additional uncorrectable errors because ECC can
detect only limited number of errors. The stronger ECC used by
ECC cache, the higher reliability the system can achieve.

As shown in Figure 17, the reliability impact of SECDED ham-
ming code, 3EC4ED BCH code, and 6EC7ED BCH code are eval-
uated. The FIT rate for SECDED starts from over 108. 3EC4ED
maintains in a safe range within the first 3-4 years, but starts in-
crease rapidly after 5 years. 6EC7ED can maintain a stable FIT
rate for nine years. As compared to soft error rate (25,000), using
6EC7ED in the proposed ECC cache increase the FIT by 0.004%.
Since most of the server machine retire in eight years or more, a
6EC7ED BCH code should detect the stuck-at faults with relatively
high reliability.

7 CONCLUSION
In this paper, a novel lightweight PCM stuck-at fault detection
scheme is proposed, which leverages temporary ECC to reduce
the performance overhead of error detection without additional in-
memory ECC storage. The proposed architecture combines verify-
after-write with an ECC cache. Checker reads are used after writes
when they are not blocking demand reads, whereas ECC bits are
calculated and stored temporarily in a small ECC cache at the
memory controller. To better utilize the limited ECC cache space,
dynamic insertion and deletion schemes are proposed to minimize
the negative performance impact of error detection. As a result,
the proposed ECC cache can achieve similar performance with a
system that does not issue verify-after-write while adding small
area and energy overhead.

ACKNOWLEDGMENT
This material is based upon work supported by the National Science
Foundation at Lehigh University under Grant CCF-1750826, CCF-
1723624, and CCF-2006748. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.
1This is close to what it is in the evaluated workloads.

ECC Cache: A Lightweight Error Detection for Phase-Change Memory Stuck-At Faults ICCAD ’20, November 2–5, 2020, Virtual Event, USA

REFERENCES
[1] Amro Awad, Pratyusa Manadhata, Stuart Haber, Yan Solihin, and William Horne.

2016. Silent Shredder: Zero-Cost Shredding for Secure Non-Volatile MainMemory
Controllers. , 14 pages. https://doi.org/10.1145/2872362.2872377

[2] Manu Awasthi, Manjunath Shevgoor, Kshitij Sudan, Bipin Rajendran, Rajeev
Balasubramonian, and Viii Srinivasan. 2012. Efficient scrub mechanisms for
error-prone emerging memories. , 12 pages.

[3] Rodolfo Azevedo, John D Davis, Karin Strauss, Parikshit Gopalan, Mark Manasse,
and Sergey Yekhanin. 2013. Zombie memory: Extending memory lifetime by
reviving dead blocks. , 452–463 pages.

[4] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration
in innovative off-chip memories. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 2 (2017), 14.

[5] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
Princeton University.

[6] B Butscher and H Weimer. 2013. libquantum. The C library for quantum comput-
ing and quantum simulation.

[7] Cadense. 2019. Cadence Genus Synthesis Solution. https://www.cadence.com/
content/dam/cadence-www/global/en_US/documents/tools/digital-design-
signoff/genus-synthesis-solution-ds.pdf.

[8] Siddhartha Chhabra and Yan Solihin. 2011. i-NVMM: a secure non-volatile main
memory system with incremental encryption. , 177–188 pages.

[9] Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju Chung, Sanghoan Chang,
Beakhyoung Cho, Jinyoung Kim, Younghoon Oh, Duckmin Kwon, Jung Sunwoo,
et al. 2012. A 20nm 1.8 V 8Gb PRAM with 40MB/s program bandwidth. , 46–
48 pages.

[10] SPEC CPU®. 2017. Standard Performance Evaluation Corporation. https:
//www.spec.org/cpu2017/.

[11] Yu Du, Miao Zhou, Bruce R Childers, Daniel Mossé, and Rami Melhem. 2013.
Bit mapping for balanced PCM cell programming. ACM SIGARCH Computer
Architecture News 41, 3 (2013), 428–439.

[12] Yu Du, Miao Zhou, Bruce R. Childers, Daniel Mossé, and Rami Melhem. 2013. Bit
Mapping for Balanced PCM Cell Programming. , 12 pages. https://doi.org/10.
1145/2485922.2485959

[13] Jie Fan, Song Jiang, Jiwu Shu, Youhui Zhang, and Weimin Zhen. 2013. Aegis:
Partitioning data block for efficient recovery of stuck-at-faults in phase change
memory. , 433–444 pages.

[14] Alexandre P Ferreira, Miao Zhou, Santiago Bock, Bruce Childers, Rami Melhem,
and Daniel Mossé. 2010. Increasing PCMmain memory lifetime. , 914–919 pages.

[15] Qing Guo, Xiaochen Guo, Ravi Patel, Engin Ipek, and Eby G. Friedman. 2013.
AC-DIMM: Associative Computing with STT-MRAM. , 12 pages. https://doi.
org/10.1145/2485922.2485939

[16] Xiaochen Guo, Mahdi Nazm Bojnordi, Qing Guo, and Engin Ipek. 2017. Sanitizer:
Mitigating the impact of expensive ecc checks on stt-mram based main memories.
IEEE Trans. Comput. 67, 6 (2017), 847–860.

[17] Engin Ipek, Jeremy Condit, Edmund B Nightingale, Doug Burger, and Thomas
Moscibroda. 2010. Dynamically replicated memory: building reliable systems
from nanoscale resistive memories. , 3–14 pages.

[18] Zhang Jun, Wang Zhi-Gong, Hu Qing-Sheng, and Xiao Jie. 2005. Optimized
design for high-speed parallel BCH encoder. , 97–100 pages.

[19] Kinam Kim. 2005. Technology for sub-50nm DRAM and NAND flash manufac-
turing. , 323–326 pages.

[20] Junyoung Ko, Jisu Kim, Youngdon Choi, HK Park, and Seong-Ook Jung. 2015.
Temperature-tracking sensing scheme with adaptive precharge and noise com-
pensation scheme in PRAM. IEEE Transactions on Circuits and Systems I: Regular
Papers 62, 8 (2015), 2091–2102.

[21] Kangho Lee and Seung H Kang. 2010. Development of embedded STT-MRAM for
mobile system-on-chips. IEEE Transactions on Magnetics 47, 1 (2010), 131–136.

[22] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2009. McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures. , 469–480 pages.
[23] Wei Liu and SUNG Won-Yong. 2012. Bose-Chaudhuri-Hocquenghem error cor-

rection method and circuit for checking error using error correction encoder. US
Patent 8,122,328.

[24] Rami Melhem, Rakan Maddah, and Sangyeun Cho. 2012. RDIS: A recursively
defined invertible set scheme to tolerate multiple stuck-at faults in resistive
memory. , 12 pages.

[25] Sparsh Mittal. 2017. A survey of soft-error mitigation techniques for non-volatile
memories. Computers 6, 1 (2017), 8.

[26] Mohammad Gh Mohammad. 2011. Fault model and test procedure for phase
change memory. IET computers & digital techniques 5, 4 (2011), 263–270.

[27] Ravi H Motwani and Kiran Pangal. 2016. Use of error correction pointers to
handle errors in memory. US Patent 9,250,990.

[28] Matthew Poremba, Tao Zhang, and Yuan Xie. 2015. Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems. IEEE Computer
Architecture Letters 14, 2 (2015), 140–143.

[29] Moinuddin K Qureshi. 2011. Pay-As-You-Go: low-overhead hard-error correction
for phase change memories. , 318–328 pages.

[30] Moinuddin KQureshi, MicheleM Franceschini, and Luis A Lastras-Montano. 2010.
Improving read performance of phase change memories via write cancellation
and write pausing. , 11 pages.

[31] Moinuddin K Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. 2009. Enhancing lifetime and security of
PCM-based main memory with start-gap wear leveling. , 14–23 pages.

[32] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. , 475–486 pages.

[33] Stuart Schechter, Gabriel H Loh, Karin Strauss, and Doug Burger. 2010. Use ECP,
not ECC, for hard failures in resistive memories. , 141–152 pages.

[34] Stuart Schechter, Karin Strauss, Gabriel Loh, and Douglas C Burger. 2014. Error
correcting pointers for non-volatile storage. US Patent 8,839,053.

[35] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. 2009. DRAM
errors in the wild: a large-scale field study. ACM SIGMETRICS Performance
Evaluation Review 37, 1 (2009), 193–204.

[36] Nak Hee Seong, Dong Hyuk Woo, Vijayalakshmi Srinivasan, Jude A Rivers, and
Hsien-Hsin S Lee. 2010. SAFER: Stuck-at-fault error recovery for memories. ,
115–124 pages.

[37] Nak Hee Seong, Sungkap Yeo, and Hsien-Hsin S Lee. 2013. Tri-level-cell phase
change memory: Toward an efficient and reliable memory system. , 440–
451 pages.

[38] James E Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred Love, W Rhett
Davis, Paul D Franzon, Michael Bucher, Sunil Basavarajaiah, Julie Oh, et al. 2007.
FreePDK: An open-source variation-aware design kit. , 173–174 pages.

[39] Dmitri Strukov. 2006. The area and latency tradeoffs of binary bit-parallel BCH
decoders for prospective nanoelectronic memories. , 1183–1187 pages.

[40] JueWang, Xiangyu Dong, Yuan Xie, and Norman P Jouppi. 2013. i 2WAP: Improv-
ing non-volatile cache lifetime by reducing inter-and intra-set write variations. ,
234–245 pages.

[41] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. The SPLASH-2 programs: Characterization and method-
ological considerations. ACM SIGARCH computer architecture news 23, 2 (1995),
24–36.

[42] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang, Parthasarathy Ran-
ganathan, Norman P Jouppi, and Mattan Erez. 2011. FREE-p: Protecting non-
volatile memory against both hard and soft errors. , 466–477 pages.

[43] Jiangwei Zhang, Donald Kline Jr, Liang Fang, Rami Melhem, and Alex K Jones.
2017. Dynamic partitioning to mitigate stuck-at faults in emerging memories. ,
651–658 pages.

[44] Zhe Zhang,Weijun Xiao, Nohhyun Park, and David J Lilja. 2012. Memory module-
level testing and error behaviors for phase change memory. , 358–363 pages.

[45] Pengfei Zuo, Yu Hua, Ming Zhao,Wen Zhou, and Yuncheng Guo. 2018. Improving
the performance and endurance of encrypted non-volatile main memory through
deduplicating writes. , 442–454 pages.

