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Abstract—Graphs – and sparse matrices – provide a powerful
representation for expressing the complex structural relationship
between elements in a set, which is why they are used extensively
in graph machine learning, network analytics, and scientific com-
puting. One of the challenges in this field is obtaining large scale
graph data for performance evaluation. Here, parameterized
graph models and their corresponding generators fill in the gap.
While there is much work on how well these models represent
real data, there are open questions as to how sensitive, or robust,
these dials are to noise.

In this paper we present a framework for evaluating parame-
terized graph models in order to study how perturbations to these
parameters affect the global structure of the resulting graph. We
discuss how this framework is extensible to any graph model
and choice of graph features. Further, we provide a case study
for Kronecker graphs and analyze the effects of varying the
parameters of the Kronecker Graph’s initiator matrix, along with
injecting noise into the graph on global features. What we will
see is that certain features have varying degrees of robustness
relative to parameter being modified.

Index Terms—Sparse Matrix, Graph, Descriptor, Kronecker
Graphs, Sensitivity Analysis

I. INTRODUCTION

Graph models are incredibly important for generating large
scale synthetic data when real data is not accessible, and when
graph operations need to be evaluated for performance. Thus,
generated data gives developers a proxy dataset to refine their
code. The closer the model approximates the real data, the
more likely developers are to produce code that is efficient for
those real datasets. One question is how much of a predictive
understanding of the global structures of the graph can these
models provide, and are these structures robust enough, i.e.
not highly sensitive to noise, that a developer can optimize
for them?

To this end, we propose a novel framework to evaluate
graph descriptors. Our framework takes an input vector of
graph generation parameters P , and produces a set of graphs
Gs = {G1, G2, G3, ..., Gn}. It then evaluates the effect of
varying P values on the structure of the output graph set Gs

through observing the change in different properties distribu-
tions such as: degree, in-degree, out-degree, in-betweenness
centrality, clustering coefficient, etc. To ensure the robustness
of the parameter set P in describing the graph structure, our
framework also evaluates the effect of adding gradual noise to
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Fig. 1: An example of an output plot produced by our graph
analysis framework. The plot shows the effect of changing
a graph generation parameter x1 on the node clustering
coefficient distribution of the graph. The dashed line indicates
the distribution for the initial graph G0

the parameter set, and observes the noise threshold alpha at
which the structure of the graph is dominated by the induced
noise.

Figure 1 shows an example output plot from our framework.
This kernel denisty estimation (KDE) plot evaluates the effect
of varying a graph generation parameter x1 ∈ P with an
incremental step α = 0.1 on the graph clustering coefficient
distribution, as one of the graph structural properties. The
original graph distribution is represented by the dashed black
line. As discussed later, x1 is an initiator matrix value of a
Kronecker graph.

The main contributions of this work is as follows:

1) Propose a novel framework to evaluate graph descriptors
and how sensitive graph structures are to them.

2) Evaluate the tolerance of the graph descriptor to random
noise.

3) Demonstrate the usage of the proposed framework
through a case study on the Kronecker Graph model.



II. BACKGROUND AND RELATED WORK

A. Generative Graph Models

Various works presented different models to generate syn-
thetic graphs [1]–[7], that are similar in terms of graph
properties [8] to real world graph. The motivation behind
the introduction of such models is, but not limited to: (1)un-
derstanding complex structures of large graph using smaller,
well-formulated synthetic models, (2)tackling the privacy re-
strictions associated with accessing and studying real graphs,
(3)predicting the evolution of large scale graphs, and (4)
benchmarking graph neural networks (GNNs) [9]. In this
paper, we focus on the Kronecker graph model as one example
of such generative models.

B. Kronecker Graphs

Kronecker graphs [10] are a class of synthetic graphs that
have been widely used to model real-world networks, and are
generated by recursively applying the Kronecker product of a
small base graph with itself. Let A and B be two matrices.
Then, their Kronecker product A⊗B is given by

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (1)

where aij are the entries of A. The resulting graph has
a power-law degree distribution and exhibits a hierarchical
structure that captures both the local and global connectivity
patterns of the underlying real-world network.

To generate Kronecker graphs, an initiator matrix (typically
of size 2×2 or 3×3) is chosen, and the Kronecker product is
applied to this matrix by itself K times, where K is the Kro-
necker power. Then, a randomly generated probability matrix
is used to mask out random values in the Kronecker matrix
(remove edges from the Kronecker graph). Other compute-
efficient methods can be used to generate Kronecker graphs
such as ball dropping and grass hopping [11].

In [10], [12], [13], the authors present and analyze the
Kronecker graph model as an approximation of scale-free
graphs. Their analysis served as a template for ours, however
in their work they compared their model against the real graphs
that they were approximating, whereas as we analyze varying
synthetic graphs against each other. In addition to Kronecker
Graphs, many other graph models have been studied and
surveyed [14]–[16].

In [17] the authors demonstrate that the Kronecker Graph
model does not produce power law graphs, but that through
the addition of noise the resulting model becomes a much
stronger representation of power law graphs.

C. Graph Learning and Structure Prediction

In [18], the authors present an extensible framework for
classifying sparse matrices structures using graph neural net-
works. The framework classifies an input matrix (graph),
into one of a pre-defined classes of structure such as mesh
network, random matrix, Kronecker graph, and combination of

Fig. 2: High-level overview of the proposed framework. It
takes initial generation parameters P0 alongside with the
domain of legal values D and the generation function f to
generate a new parameters set Ps which is used to generate a
new graph set Gs. Noise is also injected after generating the
initial graph G0 to synthesize the noisy graph set Gs Noise.
Finally, an analysis is performed on the output graph sets
structure.

them. Additional classes can be integrated in the framework.
Our proposed framework can be used in tandem with the
classifier framework by evaluating more graph models (classes
of structure), and then augmenting the classifier framework
with additional structures that show a clear correlation between
the input generation parameter set P and the output graph
structure, and robustness to injected noise.

In addition, our framework can be used to evaluate graph
generation parameters that can be then used in the feature
set selection step of training graph neural networks for non-
attributed graphs [19], given that these parameters prove to be
robust representing the graph structure.

III. FRAMEWORK OVERVIEW

Our proposed framework can be visualized as shown in
Figure 2. It takes as input a graph model (M ) generator f and
a set of initial parameters vector P0 = {p00, p01, ..., p0m−1}
such that one can generate a graph G0 of model M as follows:
G0 = f(P0). In addition, it expects the domain of legal values
for each of the parameters D = {d0, d1, ..., dm−1}. Then,
the framework generates a set of graphs Gs by varying each
of the parameters in P0 individually within D for n times,
while fixing the rest of the parameters, generating a new set
of parameters Ps = {P1, P2, P3, ..., Pn}. With the new set of
parameters, a new set of graphs Gs is generated using f such
that Gi = f(Pi) for 1 ≤ i ≤ n.

For each of the generated graphs, the framework calculates
and plots multiple graph structural properties such as degree
centrality, in-degree, out-degree, betweenness centrality, close-
ness centrality, laplacian centrality, clustering coefficient, and
singular values. The output vectors and figures enable the
evaluation of the effect of changing the parameter set Ps on
the structure of the original graph G0.

In addition, the framework evaluates how graph structure
reacts to injecting random noise, and the extent of noise to
which it maintains its original underlying structure. This is
done by adding random edges, represented as a random sparse



matrix (adjacency matrix) with density alpha. By varying
alpha, different noise matrices are generated and are added to
the original graph’s (G0) adjacency matrix. The same graph
properties are calculated and plotted as output.

Such analysis enables the evaluation of the graph model
M and the parameter set P . One can determine whether this
model M is a representative model of a set of classes that
share specific structural properties, that can be later exploited
to design the algorithms and data structures for this class
of graph, or this model does not introduce any exploitable
characteristics (i.e. random).

Moreover, the analysis can predict whether the structure of
the generated graphs is sensitive to the input parameter set.
Hence, a decision can be made to use the input parameter
set as a representative feature set for this class of graph. The
choice of adequate representative set for graph is critical in
many application such as compact graph representation for
large graphs (compressing large graphs by only storing a small
set of parameters that can be used to generate such graph on
demand), and learning on graphs: choosing a feature set for
(non-attributed) graphs in a graph neural network setting.

Noise analysis is crucial as well, since most of the real data
(graphs) are expected to include a certain level of entropy.
Gradual noise injection and observing the resulting graph
structure permits a good estimate of a noise tolerance, where
the original graph model maintains its structure before, and
loses its special characteristics beyond. It is also useful in
evaluating the graph generation parameter set: if adding noise
with higher values does not affect the graph structure, this
means that the initial graph structure was already random
and the used parameter set and/or graph model cannot be
effectively used to represent a meaningful unique class of
graphs.

IV. CASE STUDY: ANALYZING KRONECKER GRAPHS

In order to evaluate our framework, we analyze the stochas-
tic Kronecker Graph Model. The generator f is the Kronecker
graph generator. It takes the following parameters P : the
Kronecker initiator matrix X and the Kronecker power K.
For simplicity, we only consider X in this discussion.
X is assumed to be a 2 × 2 matrix and consists of the

following values: [
x0 x1

x2 x3

]
Hence, each parameter vector can be represented as Pi =

{xi0, xi1, xi2, xi3}. The domain D for the each xij ∈ Pi is
floating point values between 0 and 1.

To evaluate the correlation between each of the initiator
matrix values and the resulting Kronecker graph structure,
we vary each of them within D, while fixing the other three
values. We observe the effect of this variation on different
graph and node-level attributes such as: degree, in-degree,
out-degree, betweenness centrality, etc. The initial parameter
vector P0 is based on Kronfit’s [12] estimated Kronecker ini-
tiator values [10] of the High Energy Physics - Phenomenology
Collaboration (CA-HEP-PH) Graph [20]. Starting with P0, we

generate graphs of the 6th Kronecker Power (K = 6) for each
of initiator matrices we evaluate Ps = {P1, P2, ..., Pn}.

For example, to evaluate the effect of changing x0, we fix
the values of x1, x2, and x3. We then vary the value of x0 for
m times (5 in our experiments), by subtracting α (0.1) each
time. So, for the first time, the new initiator matrix values will
be as follows: [

x0 − α x1

x2 x3

]
From this new initiator matrix, we generate a Kronecker Graph
of Kronecker power 6. Then, we analyze the different graph
and node-level attributes detailed in the following subsections.

For distributions, our framework generates Kernel Density
Estimation plots, where the horizontal axis represents the
property distribution (degree, betweenness centrality, etc.), and
the vertical axis represents the density of the distribution at
each point. A black dashed line the Figures 3, 4, 5 represents
the corresponding distribution for the initial parameter set P0,
which is the starting point from which the framework begins
to vary the parameter set values.

Figure 3 shows the effect of varying the different initiator
matrix values on the degree distribution of the resulting
Kronecker graph. To further investigate the structural effects of
changing the different initiator matrix values, we additionally
study the in-degree and out-degree behavior. Figure 4 shows a
similar analysis for in-degree distribution. Figure 5 shows the
analysis for out-degree distribution.

For noise analysis in Figure 6, we evaluate the effect
of varying random noise (varying the random noise sparse
matrix density: alpha) on: (a) Degree, (b) In-Degree, (c) Out
Degree, (d) Betweenness Centrality, (e) Closeness Centrality,
(f) Laplacian Centrality, (g) Clustering Coefficient, and (h)
Scree Plot (singular values). The dashed black lines represent
the distributions for the original initial graph G0 with no noise
injected.

A. Effect of Varying Kronecker Initiator Values

1) varying x0: For the degree distribution, Figure 3a
shows that increasing x0 value results in increasing the max-
imum degree across nodes, and decreasing it decreases the
maximum degree. It is also seen that the minimum degree is
not affected due to x0 variation. This means that increasing the
value of x0 flattens the degree distribution of the graph, where
the peak density (or frequency) of nodes with low degree is
decreased (as compared to lower x0 values) and the peak of
the distribution gradually shifts towards the right bottom. This
behavior is consistent across the different values we tested for
x0 within the legal range.

In-degree distribution exhibits a similar behavior to the
overall degree distribution as shown in Figure 4a: maximum
degree increases with increasing the value of x0, and the
minimum degree is still unaffected, which squishes the peak
density of the lower degrees into a flatter curve with lower
peaks as compared to smaller x0 values.

As for out-degree, increasing x0 still increases the maxi-
mum out-degree. However, x0 contribution to increase of out-
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Fig. 3: The effect of changing (a)x0 , (b)x1 , (c)x2, and (d)x3 on the degree distribution of the resulting K6 Kronecker Graph.
Each of the sub-figure is a KDE plot where the degree distribution are on the horizontal axis, and the density is on the vertical
axis.
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Fig. 4: The effect of changing (a)x0 , (b)x1 , (c)x2, and (d)x3 on the in-degree distribution of the resulting K6 Kronecker
Graph. Each of the sub-figure is a KDE plot where the degree distribution are on the horizontal axis, and the density is on the
vertical axis.
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Fig. 5: The effect of changing (a)x0 , (b)x1 , (c)x2, and (d)x3 on the out-degree distribution of the resulting K6 Kronecker
Graph. Each of the sub-figure is a KDE plot where the degree distribution are on the horizontal axis, and the density is on the
vertical axis.

degree is limited compared to in-degree as illustrated in Figure
5a.

2) Varying x1: For the degree distribution, Figure 3b
shows the effect of varying x1. A similar trend to x0’s
is observed. However, increasing x1 rapidly increases the
maximum degree to a higher value.

On the other hand, changing x1 shows a different trend of
increasing both maximum and minimum In-degree as shown
in Figure 4b, even though the increase in the minimum degree
is slower. Also, the maximum in-degree for the maximum x1

value is significantly lower than that of the overall degree. So,
most of the degree increase accounts to the out-degree increase
and not the in-degree. An extended range of maximum degree
increase proves this behavior in Figure 5b.

3) Varying x2: The effect of varying x2 on the resulting
graph degree is similar to that of x1 as shown in Figure 3c,
and with similar values for maximum degree.

However, the opposite is true for In-Degree and Out-
Degree. Figure 4c illustrates that in-degree increase dominates
the majority of the degree increase. The peak density still
decreases with increasing x2, but the range of in-degrees that
fall within the peak density is narrower than what is observed
for x1.
x2 changes the out-degree distribution in smaller steps than

it does for the in-degree distribution as illustrated by 5c.
4) Varying x3: Figure 3d demonstrates the effect of varying

x3 on the overall degree distribution, where increasing x3

value affects both the minimum and maximum degree across
nodes. Smaller x3 values have both smaller minimum and
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Fig. 6: The effect of changing the injected sparse random noise matrix density on (a) degree, (b) in-degree, (c) out-degree, (d)
betweenness centrality, (e) closeness centrality, (f) Laplacian centrality, and (d) scree plot of the resulting Graph. Each of the
sub-figure is a KDE plot where the degree distribution are on the horizontal axis, and the density is on the vertical axis.

maximum degree values as compared to higher x3 values.
Changing x3 values shifts the degree distribution to the right or
the left (change min and max degree), but has a smaller effect
on the degree density across nodes (peak density/frequency
is slightly affected), which is different from the effect of
changing x0, x1 , and x2 on the degree density as described
before.

Similarly, for In-Degree both tails of the density distribution
are extended without a significant change in the peak density
as exhibited in Figure 4d. x3 variation has an almost identical
effect on both in-degree and out-degree.

5) General Observations: From the above analysis, it is
obvious that certain features are more sensitive to certain pa-
rameters than others. For example: Figure 3 shows that degree
is more sensitive to varying x3 than x0. In-degree (Figure
4) is highly sensitive to changes in x1, while out-degree is
more reactive to changes of x2. Also, as x3 values increases
(gets closer to x0), degree distributions start to diverge quickly
(the mean degree shifts significantly). Additionally, Figure 4b
shows that x1 change has the highest effect of in-degree, and
Figure 5c demonstrates that x2 has a significant impact on
out-degree distribution.

B. Varying noise

To evaluate the robustness of the correlation between the
graph descriptor (Kronecker initiator matrix values) and the
graph structure, we inject random noise to observe how the
structure reacts to noise. The noise injected is a random sparse
matrix, that is added to the adjacency matrix of the generated
Kronecker graph. Then, we vary the density (sparsity) of the
random matrix, and evaluate the effect of noise with different
values for density (alpha).

Figures 6a, 6b, and 6c show that for lower values of alpha
(up to around 2%), the resulting graph maintains a very similar
degree distribution, compared to the original graph with no
noise. Beyond that point, the random noise starts to take over
until the Kronecker characteristics of the original graph are no
longer recognizable.

Figure 6d shows a similar behavior for the betweenness
centrality of the graphs. Random noise with alpha above 4%
distorts the original graph betweenness centrality distribution.

Closeness centrality distribution is more sensitive to random
noise as shown in Figure 6e, where the entire distribution shifts
to the right, with the minimum closeness tail almost fixed.
However, the pattern still persists where for injected noise with
alpha beyond 4%, the distribution completely changes.

Laplacian centrality in Figure 6f is less sensitive to the noise
as compared to closeness centrality, for lower values of alpha
(up to 4%). With higher alpha, the distribution skews and is
mainly random noise.

The Clustering coefficient by nature is highly sensitive
to graph structure changes as shown in Figure 6g. Any
noise with alpha greater than 1% immediately disrupts the
distribution. Such behavior is expected since the clustering
coefficient captures the local connections in a graph, and
how it propagates globally. When adding a few new edges
(by injecting random noise with low alpha value), the local
connectivity patterns are immediately affected: local clusters
may be disrupted or new clusters may form, eventually leading
to changes in the clustering coefficient values for individual
nodes, and then the overall distribution. However, one can still
notice the significant difference between inducing noise with
lower alpha values (up to 4%) and inducing noise with higher
alpha values.

The Scree plot of a graph captures the relative importance



of components (nodes) in the graph. The importance of a
component in a graph is mainly represented by the number of
connections (degree) of the component. Inducing the random
noise in our experiments simply adds new edges to the graph,
so its relative effect on scree plot is not expected to be
significant as shown in Figure 6h. However, adding noise
with higher alpha values increases the (absolute) spectral gap
between adjacent singular values.

V. CONCLUSION

In this paper, we proposed a novel framework to evaluate
graph descriptors. The framework takes as input the graph
descriptor (generation parameters) and generation function,
and evaluates the co-relation between the descriptor values
and the underlying graph structure. It captures the sensitivity
of the graph structure to the descriptor values, as well as
to injected random noise. Changes in graph structure are
detected by observing the change in different graph structural
properties such as degree, in-degree, out-degree, betweenness
centrality, closeness centrality, laplacian centrality, clustering
co-efficient, and singular values. We provided a case study of
using the framework by analysing the sensitivity of stochastic
Kronecker graph structure to the initiator matrix values used
to generate them, and to induced random noise (sparse random
matrix) with varying density. The design of the framework is
modular so that it can evaluate different existing and future
graph models, and additional graph properties can be easily
calculated for evaluated graphs.
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