N)
)
Check for
updates

Breaking the Vendor Lock — Performance Portable Programming

Through OpenMP as Target Independent Runtime Layer

Johannes Doerfert Marc Jasper Joseph Huber
jdoerfert@anl.gov jasper3@llnl.gov huberjn@ornl.gov
Argonne National Laboratory, Lawrence Livermore National Oak Ridge National Laboratory, Oak
Lemont, USA Laboratory, Livermore, USA Ridge, USA
Khaled Abdelaal Giorgis Georgakoudis Thomas Scogland
khaled.abdelaal@ou.edu georgakoudis1@llnl.gov scogland1@lInl.gov
University of Oklahoma, Norman, Lawrence Livermore National Lawrence Livermore National
USA Laboratory, Livermore, USA Laboratory, Livermore, USA
Konstantinos Parasyris
parasyris1@lInl.gov
Lawrence Livermore National
Laboratory, Livermore, USA
ABSTRACT CCS CONCEPTS

High performance computing (HPC) systems pervasively feature
GPU accelerators. For maximum efficiency, these are usually pro-
grammed using vendor-specific languages, such as CUDA. However,
this is not portable and leads to vendor lock-in. Existing portable
proramming models require transcribing the whole application,
which is tedious and often results in sub-optimal performance with-
out necessarily avoiding the need to maintain multiple versions.
Although solutions for automated translation exist, they sacrifice
either features of the original model, performance, or both.

We propose a novel compiler-based approach for performance
portable programming of GPUs by generating portable code from
the original, vendor-specific application source. Specifically, we
present LLVM/Clang extensions for performance portable CUDA
by leveraging the existing LLVM/OpenMP offloading infrastruc-
ture for portable execution on different GPU architectures. Our
contributions include: re-designing the compiler driver for portable
toolchain generation, defining a target independent math library,
and re-architecting compiler lowering from CUDA APIs to existing
and new OpenMP runtime calls. We evaluate our approach using
six established CUDA proxy and benchmark applications first on
NVIDIA GPUs, to measure the overhead of our portability layer,
then secondly on AMD GPUs, to determine the efficacy of our ap-
proach. In both experiments we compare the performance to native
program versions, i.e., CUDA and HIP. Our approach has minimal
overhead compared to non-portable alternatives, thus providing
viable performance portability for existing code without cost to the
user. We further show CUDA code debugged directly on the host.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

PACT ’22, October 8-12, 2022, Chicago, IL, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9868-8/22/10...$15.00
https://doi.org/10.1145/3559009.3569687

494

« Software and its engineering — Compilers.

KEYWORDS
Performance portability, CUDA, GPGPU, OpenMP, AMDGPU, LLVM

ACM Reference Format:

Johannes Doerfert, Marc Jasper, Joseph Huber, Khaled Abdelaal, Gior-
gis Georgakoudis, Thomas Scogland, and Konstantinos Parasyris. 2022.
Breaking the Vendor Lock — Performance Portable Programming Through
OpenMP as Target Independent Runtime Layer. In International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT ’22), Oc-
tober 8-12, 2022, Chicago, IL, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3559009.3569687

1 INTRODUCTION

Performance Portable Programming is an abstract goal in which
diverse hardware can be interchanged without requiring program
porting, tuning, or maintenance efforts. At the beginning of the
GPGPU era the difference in programming difficulty between the
two available GPGPU targets was so large that it led to the enor-
mous (and enormously successful) CUDA ecosystem. However, as
a proprietary programming language, CUDA can traditionally only
be compiled to NVIDIA GPUs. With the advent of greater GPU
diversity, new programming languages emerged with the promise
of being as performant as CUDA while portable across different
(GPU) vendors. Given the manifold of choices and their vastly
varying support on actual diverse hardware, users are rightfully
confused. Further, any change in programming language requires
a complex and expensive porting of existing applications. While
some automation exists, there are no clear answers on the horizon.
A major reason is the feature divergence between the different par-
allel programming language options. HIP, for example, subsumes
most of CUDA up to version 8, but later extensions are not available.
Consequently, a port to HIP prevents the use of new hardware and
software features even if the HIP code is executed on an NVIDIA
GPU that would provide all required support.

https://orcid.org/0000-0001-7870-8963
https://orcid.org/0000-0002-2842-6682
https://orcid.org/0000-0003-4987-8116
https://orcid.org/0000-0001-6542-3555
https://orcid.org/0000-0001-7234-5743
https://orcid.org/0000-0002-8258-9693
https://doi.org/10.1145/3559009.3569687
https://doi.org/10.1145/3559009.3569687
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3559009.3569687&domain=pdf&date_stamp=2023-01-27

PACT °22, October 8-12, 2022, Chicago, ILJdHhnes Doerfert, Marc Jasper, Joseph Huber, Khaled Abdelaal, Giorgis Georgakoudis, Thomas Scogland, and Konstantinos Parasyris

CUDA OpenMP HIP SYCL
mvm. S ¥ v e
portability [clang J(....... 0
extensions '

, = g OO0 .
5] olg] -]
g 2l= 2|2 =] .
i B s, ks & 2 & APL
= JMathlib *, S 15 wrappers !
gb < ‘3‘ o 3] '
<]
2|) [y g).
=1 —

& \OMP RT —
\ 7 executionl builtin
.7 wrappers
4
I(I)l il -)[libomptarget]
vendor o
runtimes

yd
el "] 3+ 1+
L0 R o SO © S
Intel GPU CPU/VGPU AMD GPU NVIDIA GPU

Figure 1: Overview of our LLVM compiler with portability
extensions. The already supported inputs and outputs are
shown with a green crosshatch background, the ones on a
red dotted background can be dealt with in the same way.
All parts of the compilation pipeline shown on light yellow
background have been implemented or modified, the grid
background on the left indicates the target dependent parts.

For this work we took a step back and started from the same place
as many HPC users, with CUDA code. First off, CUDA has proven
to be a great asset in GPGPU programming. While other models
might provide convenient features or some degree of portability, it
is arguably not always enough to justify an expensive porting effort
with uncertain outcomes. For this reason, a non-trivial amount of
users are interested in keeping the known-to-work CUDA code
around, potentially augmented with other kernels to explore alter-
native hardware. If we assume CUDA is not going to be replaced,
and we assume duplication of compute kernels is not a viable long
term strategy either, we need to make CUDA performance portable
instead. In fact, we argue that portability is only the first step and
users actually want fully interoperable and performance portable
parallel programming languages that can be combined as needed.

In this work we present a solution for performance portable
GPU programming that is (almost) fully transparent to the user.
Our prototype CUDA compiler, conceptually depicted in Figure 1,
targets an augmented OpenMP offload runtime which is effectively
a target independent API on top of different GPU runtimes, e.g.,
CUDA and HSA. Through multiple independent wrapper layers
we redirect explicit CUDA API calls issued by the user, implicit
CUDA API calls generated by the compiler, as well as CUDA builtin
function calls to respective OpenMP versions. Together with a new
inter-operable compiler driver, a portable math library for GPUs,
and augmented OpenMP runtimes on the host as well as the device,
we can execute CUDA programs with minimal performance penalty
on AMD GPUs. Through the virtual GPU target [24], host execution
of CUDA is feasible as well. Notably, our strategy is not restricted

495

to CUDA. With wrappers for HIP and SYCL/DPC++, following the
presented scheme, one can port these languages to all supported
targets and further combine them with each other and CUDA alike.
In the following, we summarize the contributions and limita-
tions of this work before we briefly explain offload compilation via
LLVM/Clang in Section 3. The necessary steps to achieve porta-
bility and interoperability are described in Section 4. Additional
benefits of the LLVM/OpenMP layer are introduced in Section 5.
An evaluation on six HPC proxy and benchmark applications is
presented in Section 6. Before we conclude in Section 9, we discuss
related work in Section 7 and future extensions in Section 8.

2 CONTRIBUTIONS AND LIMITATIONS

This work introduces a compiler prototype based on LLVM/Clang
which takes a CUDA program as input and compiles it for NVIDIA
or AMD GPUgs, or the host CPU. The main contributions are:

o The CUDA compiler prototype that can target different GPU
and CPU architectures by utilizing augmented LLVM/OpenMP
offloading runtimes as the target of independent wrapping layers
for CUDA host and device APIs.

o Augmented LLVM/OpenMP runtimes that expose more control
to the user, e.g., for kernel launch parameters, and which provide
target independent accessors not required for standard OpenMP.

e A target independent standard math library for GPUs, i.e., 1ibm
for GPUs, that allows portability for math functions and enables
more compiler optimizations for them in the process.

e A new compiler driver scheme which uses a novel embedding of
device code in the host object files to allow for interoperability
between offloading models, so far OpenMP and CUDA.

o The ability to use the OpenMP ecosystem for CUDA codes, in-
cluding but not limited to: the OpenMP tooling interface (OMPT),
and remote OpenMP offloading [23].

Our work is a research prototype with limitations, including:

e We only support a subset of the CUDA runtime API. This is not a
conceptual limitation and more can be ported as required. Simi-
larly, we do not support libraries like NVIDIA CUB or Thrust yet.
Both require more than new wrappers around CUDA API calls
as they contain, among other things, NVIDIA specific assembler.
We describe possible solutions in Section 8.

o Our capabilities are based on, and thereby limited by, language
support of LLVM/Clang and offload support in LLVM/OpenMP.
In particular, community LLVM does not yet support Intel GPUs.

3 BACKGROUND

Before we approach compilation for a target independent interme-
diate layer, we need to understand the current compilation model
LLVM/Clang uses for offloading. While we discuss CUDA in partic-
ular, the same ideas hold for HIP, OpenMP, and SYCL as well.

(1) The Clang driver pre-includes headers distributed together
with LLVM/Clang. These headers define CUDA builtins, like
threadIdx.x, and declare various functions provided by the
libdevice library included with the CUDA installation.

(2) User includes of C++ headers, e.g., complex, are intercepted
through additional include paths prepended by the Clang driver.

Breaking the Vendor Lock — Performance Portable Programming Through OpenMP as Target Independent Runtime Layer

Clang headers wrap system headers with a modified environ-
ment that makes them (better) usable on the device.
Clang processes the CUDA source code as it would with codes
written in other languages. However, certain constructs will
result in CUDA API calls not present in the user program. Of
note are kernel launches via the triple chevron (kernel<<<Grdpim,
BlckDim>>>(arg)) which are lowered to cudaLaunchkernel, and the
registration code emitted into the host object file for kernels
and global variables exposed in the device code.
The CUDA libdevice library is linked into the LLVM-IR gen-
erated for the device side before it is optimized and lowered
to PTX. This library provides definitions for device functions,
including math functions like __nv_sin.

—
N
=

We reused the same techniques but modified all steps to break
the dependence on the CUDA installation unless the targeted is
an NVIDIA GPU. When we target an AMD GPU we will link in
the AMD counterparts to the NVIDIA/CUDA specific libraries. For
host debugging we use the same libraries for host and device.

4 APPROACH

Making an accelerator offloading language portable requires sever-
ing ties to the target specific environment. All compilation steps,
except code generation, should be independent of the target archi-
tecture. We describe this in general, but provide examples rooted in
the changes necessary to re-target CUDA. Other languages, such
as HIP and SYCL, will require similar steps but can largely reuse
parts that do not deal with CUDA types or API functions explicitly.

4.1 Original Language Dependencies

There are various kinds of dependencies on particular functionality
distributed as part of the original language software development
kit (SDK). Conceptually, one can choose to either use (i) all, (ii)
some, or (iii) none of the features distributed with the language,
e.g., headers. With option (i) all symbols are available but not all
of them will have been wrapped properly, resulting in hard-to-
detect runtime errors when non-supported hardware is targeted. It
is further not guaranteed that the portability layer and the original
language will inter-operate on supported hardware, resulting in
hard to debug execution time incompatibilities. The second option
(ii) is a middle ground that would only use original headers. How-
ever, it is impossible to control how much is included transitively
and it would require wrapping various unused functions just to
make them available for the linker. While one can automate the
process of providing non-functional wrappers for linking purposes,
there are other complications in original headers, e.g., inline assem-
bly, that complicate this approach. Lastly, option (iii) avoids the
SDK entirely as not to mix it with the portability layer. This ensures
that errors are generally flagged early in the compilation process
and only the symbols used by the application are actually needed.
However, since types, among other things, are now provided by
the portability layer, we cannot mix in any original language parts
without risking clashes, e.g., multiple definitions of the same name.

For this work, we chose option (iii) by completely cutting ties
with the CUDA installation during the compilation and instead
provide the necessary definitions ourselves. Said differently, we
effectively passed the -nogpulib and -nogpuinc command line

496

PACT °22, October 8-12, 2022, Chicago, IL, USA

inline cudaError_t cudaMalloc(void **DevPtr, size_t Size) {
if (omp_get_default_device() == omp_get_initial_device())
return __last_error = cudaErrorNoDevice;

*DevPtr = omp_target_alloc(Size, omp_get_default_device());
if (*DevPtr == nullptr)

return __last_error = cudaErrorMemoryAllocation;
return

__last_error = cudaSuccess;
3
Figure 2: Definition of cudaMalloc in our cuda_runtime_api.h
header. Existing OpenMP APIs are used with additional con-
trol logic. The value of __last_error is used in cudaGetLastError.

options to the LLVM/Clang driver as it ensures no CUDA package
components are used. In the following, we discuss the different
parts that require handling if the original SDK is not available.

4.1.1 Headers. The first issue that appears when the original lan-
guage SDK is not used is missing headers. Users include language
dependent headers, e.g., cuda. h, in order to get access to types and
functions not predefined by the compiler. We employ the same trick
LLVM/Clang used to intercept includes of system headers, ref. (2)
in Section 3. A custom include path is added to LLVM/Clang to
expose common headers provided by the language SDK. Our im-
plementations of these are similar to the SDK versions in that they
provides type definitions (incl. cudaError), macros (incl. __shared__),
and runtime function declarations. The latter are special as we
do provide definitions with inline linkage right away rather than
functions declarations that serve as entry points into the original
language runtime. As illustrated in Figure 2 the original API func-
tions are implemented with corresponding functionality exposed
by our extended OpenMP offload runtime together with logic to
account for error handling and signature differences.

4.1.2 API Calls. In Figure 2 we have already shown how user fac-
ing APIs are provided by our custom implementations of common
language headers. In addition, we also need to handle compiler
generated calls to the original language runtime which generally
do not have a counterpart in the user facing API of OpenMP. The
best example is the triple chevron syntax (Kernel<<<Grddim, BlckDim
>>>(arg)) which is lowered to __cudaPushCallConfiguration as well as
__cudaPopCallConfiguration and ﬁnally a call to cudalLaunchkernel. To
provide these implicitly defined functions, we pre-include head-
ers into the application as LLVM/Clang does for regular CUDA
compilation, ref. (1) in Section 3. Their implementation involves
manipulation of thread-local global state and calls into the OpenMP
offload runtime parts usually only targeted by LLVM/Clang to
implement things like target directives (#pragma omp target). To sup-
port multi-dimensional kernel launches, user provided streams,
and dynamic shared memory, we created a new entry point in the
OpenMP offload runtime that accepts the same parameters as the
regular CUDA kernel launch does. LLVM/OpenMP already supports
streams when NVIDIA GPUs are targeted so their handling can be
integrated easily. Once the AMD GPU plugin in LLVM/OpenMP
gains support for “streams” we can implement CUDA streams with
those. For the time being, streams are effectively ignored when we
target AMD GPUs. For dynamic shared memory we added support
into the LLVM/OpenMP offload runtime which makes the feature
available in the same way as CUDA exposes it to the user, hence
through an external global array in __shared__ memory space.

PACT °22, October 8-12, 2022, Chicago, ILJdHhnes Doerfert, Marc Jasper, Joseph Huber, Khaled Abdelaal, Giorgis Georgakoudis, Thomas Scogland, and Konstantinos Parasyris

4.1.3 Builtins. Language builtins are pre-defined by the compiler
either through explicit handling of expressions or via declarations
in pre-included header files. For this work we reused the imple-
mentation of the globals threadIdx, blockIdx, blockDim, and gridDim
LLVM/Clang provides in its pre-included headers. Accesses to the x,
y, and z members are translated to function calls via the __declspec
(property(get=getter)) construct. The actual getters are the builtin
functions __nvvm_read_ptx_sreg_[n]{cta,t}id_x. As the user, a library,
or the compiler itself might call these builtin functions explicitly we
provide a wrapper for them rather than a different lowering of the
member accesses to the {Thread,Block}Idx and {Block,Grid}Dim globals.
To get a portable device API we followed the design of the OpenMP
device runtime introduced by Tian et al. [28]. The target indepen-
dent interface exposed to the compiler are implemented differently
for each target architecture. The entire lowering scheme for an ac-
cess to threadIdx.x is shown in Figure 3. Other device-side builtins,
such as __syncthreads, are implemented the same way. Some can
directly be lowered to existing target independent entry points of
the OpenMP device runtime. For others, like the three dimensional
block and grid coordinates, we extended the API as required.

4.1.4 Assembly. Inline assembly is inherently target specific. The
presence of inline assembly for a different architecture, even in dead
code, does often cause problems as the compiler frontend is unable
to verify the (few) syntactic and semantic constraints assembly has
to fulfill. Since most user applications, including our benchmarks,
do not use target specific assembly we did not implement support
for it. However, libraries, e.g., NVIDIA CUB, do use inline assem-
bly and will consequently not compile to a different architecture
seamlessly. To leverage library functions not utilizing assembly
one could delay assembly-related errors in LLVM/Clang and only
emit them if the code is emitted. To further allow assembly in an
application one would need to replace it with appropriate code for
the target architecture, or a target independent abstraction.

4.2 Portable Offloading

We already introduced different layers to implement APIs or builtins
of the original language in target agnostic ways. However, creating
offload binaries is conceptually more complicated than host only
compilation. Both host and device code require separate compilation
as well as linking steps that need to be orchestrated. Furthermore,
the resulting binaries must be combined such that cross-device refer-
ences are resolved properly at runtime. All that has to work without
disturbing existing build infrastructure, requiring that every build
step can only produce a single object file and no additional com-
mands shall be required from the user. While all offload languages
supported by LLVM/Clang already deal with these complications,
they do so on a per language basis. To support re-targeting and full
interoperability we needed to unify offload compilation.

4.2.1 Offload Driver. The LLVM/Clang compiler driver is respon-
sible for generating the necessary steps to create the final object
file, executable, or library. For this work we replace the existing
offloading drivers of OpenMP and CUDA with a truly target inde-
pendent version that (mostly) unifies their respective toolchains.
Our new LLVM/Clang offloading driver contains two major changes
compared to the existing offloading drivers. First, we use a unified

497

__clang_cuda_builtin_vars.h - existing - LLVM/Clang

// Declare a global ~threadIdx™ and define accesses to the x
// member as calls to ~__nvvm_read_ptx_sreg_tid_x~ builtin.
struct __cuda_builtin_threadIdx_t {

__declspec(property(get = __fetch_builtin_x)) unsigned x;

static inline __attribute__((always_inline, device))

unsigned __fetch_builtin_x(void) {

return __nvvm_read_ptx_sreg_tid_x;

/7 ...
3

extern const __attribute__((device, weak))
__cuda_builtin_threadIdx_t threadIdx;

__openmp_cuda_device_wrapper.h - new - LLVM/Clang
// The ~__nvvm_read_ptx_sreg_tid_x~ familiy of builtins is defined
// through new target independent OpenMP device functions.
__device__ uint32_t __kmpc_get_hardware_thread_id_in_block_x();

__attribute__((device, always_inline, flatten))
inline unsigned __nvvm_read_ptx_sreg_tid_x() {
return __kmpc_get_hardware_thread_id_in_block_x();

. -

DeviceRTL/src/Mapping.cpp - extended - LLVM/OpenMP

// The target independent entry points are implemented based on
// the target architecture the device runtime is compiled for.
#pragma omp begin declare variant match(device={arch(amdgpu)})
uint32_t __getHardwareThreadIdInBlockX() {

return __builtin_amdgcn_workitem_id_x();

}

#pragma omp end declare variant

#pragma omp begin declare variant match(device={arch(nvptx64)3})
uint32_t __getHardwareThreadIdInBlockX() {
return __nvvm_read_ptx_sreg_tid_x();

}

#pragma omp end declare variant

extern "C" uint32_t __kmpc_get_hardware_thread_id_in_block_x() {
return __getHardwareThreadIdInBlockX();
3
Figure 3: The three steps used to lower threadidx.x to
the respective CUDA or AMDGCN builtin that retrieves
the value at runtime. The top part is already included
with LLVM/Clang’s CUDA implementation and results
in the translation to the target dependent builtin call
__nvvm_read_ptx_sreg_tid_x. The two lower parts have been added
to map the NVIDIA builtin first to a target independent one
(__kmpc_get_hardware_thread_id_in_block_x) and then to the proper
implementation for the user chosen target architecture (e.g.,
__builtin_amdgen_workitem_id_x for AMD GPU targets). Note that
the code in the bottom part is included in the OpenMP device
runtime and compiled for all supported architectures. The
offload driver will link in the right version as part of the de-
vice code link and optimization step. As such, all indirections
will be folded and threadidx.x will result in a single builtin call,
as it would with native CUDA or HIP compilation.

scheme to compile and embed device objects into the host object.
Second, we combined all the complexity of device linking into a
single stage that augments the normal host linking step. Device
linking was previously handled in the clang driver itself uniquely
for each toolchain, which made it impossible to compile different

Breaking the Vendor Lock — Performance Portable Programming Through OpenMP as Target Independent Runtime Layer

struct __offload_entry {
void *addr;
char *name;
size_t size;
int32_t flags, reserved;
b
__offload_entry entry __attribute__((section("offloading_entries")));

// Linker defined symbols used by the runtime.
extern struct __offload_entry __start_offloading_entries;
extern struct __offload_entry __stop_offloading_entries;

Figure 4: Registration scheme for device globals and kernels
that require host access. For each symbol an offload entry is
placed in a special ELF section ("offloading_entries"), the section
is later inspected by the OpenMP runtime.

toolchains together or handle static libraries with device code cor-
rectly. In addition to targeting the OpenMP runtime from CUDA,
this new driver allows us to mix and match CUDA and OpenMP
device code. We further support linking device libraries late which
allows to optimize target independent code early and include target
dependent implementations only after generic optimizations, e.g.,
for math functions, have been performed.

Code Embedding. Offloading schemes embed device code into
the host object file to work seamlessly with existing build setups.
Our unified embedding scheme wraps the device code in a new
binary format that contains necessary metadata for interoperability,
e.g., what offload target was used. This binary file is embedded into
the host ELF file as a section with the SHF_EXCLUDE flag set. Our
new augmented linker step extracts device code from all object files
and (static) libraries. The necessary linking steps for the target are
performed using vendor tools. Finally, runtime registration code is
generated for symbols that need be accessed by the host.

Symbol Registration. Offloading languages require externally vis-
ible global symbols, which includes kernels, to be first registered
by the host before they can be used, e.g., for a host-to-device mem-
cpy or kernel launch. In order to unify the offloading languages
and achieve interoperability we must be able to register globals
from both CUDA and OpenMP equivalently. We accomplished
this by changing LLVM/Clang’s CUDA code generation to create
the same offloading entries as LLVM/OpenMP uses. The scheme,
sketched in Figure 4, is much simpler than the original handling for
CUDA symbols. A device-side global is registered by creating a host-
side __offload_entry in a special ELF section ("offloading_entries").
The linker defined symbols __start_SECNAME and __stop_SECNAME allow
generic registration code at runtime to iterate all offload entries
regardless their origin. The actual registration with the vendor
drivers is then performed by the OpenMP offload runtimes.

4.2.2 Target-Specific Device Libraries. GPU vendors provide their
own device libraries that implement builtins and parts of the stan-
dard library, e.g., common math functions, in target dependent
ways. Offload schemes in LLVM/Clang include these libraries early
and combined them with headers that defined standard library func-
tions, including math functions, eagerly through target dependent
alternatives. As an example, CUDA and OpenMP offload provide
math overlay headers that define sin as an inline function returning
the result of __nv_sin. The latter is then defined in the early linked in
LLVM-IR libdevice library, which is part of a CUDA installation.

498

PACT °22, October 8-12, 2022, Chicago, IL, USA

To provide portability and allow the LLVM middle-end to opti-
mize calls to known runtime functions, especially math functions,
we delayed inclusion of target dependent definitions and linking
of target dependent code. To this end, we needed a generic GPU
“libm” math library for each supported architecture.

We create our GPU math libraries directly from the GPU math
headers used for CUDA, OpenMP, and HIP compilation. Instead of
linking the headers into the application source code we compile
them into standalone LLVM-IR bitcode files. During late linking
we pick the vendor libraries and the math library for the target
architecture and merge it with the application LLVM-IR code.

4.2.3 Optimization Pipeline. To facilitate target independent opti-
mizations, especially for “known” runtime calls like math functions,
we run the optimization pipeline before we link in any target de-
pendent libraries. To eliminate potential overhead of the wrappers
that translate CUDA into generic APIs which are then implemented
with target dependent code, we run the optimization pipeline again
after all libraries have been linked into the device code. This dual
optimization is possible as we run device code optimizations during
the regular compilation stage as well as during the new augmented
linker stage. The final compilation flow is sketched in Figure 5. The
top part shows the compile-time actions and the bottom part illus-
trates the link-time steps. Note that the user chosen optimization
level (-OX) is passed to clang as well as 11c.

-fcuda-omp
— ; > clang | o
= -offload=<triple> -O0X g
a.cu e i
e =
.............................. A
<I) embedding £
:)
a-device.bc ©
Al
> ah) «--
libm.bc a-device.bc
3 k
<> <D
I : \ llvm-link =
vendor-lib.bc a-host.o é
v =
TERRE
-0X A e
e s 3
Y £
a-device-linked.bc - &
A
Gt} -+ [}
a-device.s a-device.o

Figure 5: Compilation pipeline for CUDA inputs. The
compile-time part (top, blue crosshatch background) opti-
mizes the input without target specific code, though the de-
vice IR is target dependent. At link-time (bottom, green grid
background), target specific code and vendor libraries are
linked into the device code. The result is optimized again to
eliminate potential indirection overheads.

PACT °22, October 8-12, 2022, Chicago, ILJdHhnes Doerfert, Marc Jasper, Joseph Huber, Khaled Abdelaal, Giorgis Georgakoudis, Thomas Scogland, and Konstantinos Parasyris

[os [is l2s

3s 4s

gt regi.. fa.. T T

Toa_g..

0s 1s 2s

Total _omp_target_memcpy.

gt register lip .

Toal _igl kemel
Toal unNonCpenhiPKemel

Total _omp_target memepy

Figure 6: Screenshots of profile traces obtained via LIBOMPTARGET_PROFILE for the execution of Lulesh (CUDA version). The top
part illustrates execution on an NVIDIA GPU (V100) and the bottom part is the same code executed on an AMD GPU (MI50).

5 LLVM/OPENMP ECOSYSTEM

Using the OpenMP runtimes as target independent runtime layer
has benefits beyond portability and interoperability with OpenMP.
The LLVM/OpenMP ecosystem has significantly grown in recent
years and it provides unique capabilities, especially compared to
other open source compiler support of parallel programming lan-
guages. Through this work, current and future development efforts
in the LLVM/OpenMP space will become accessible to CUDA codes,
and eventually also to other languages such as HIP and SYCL.
Features especially interesting to developers include advanced
debugging support [7], a virtual GPU (VGPU) offloading target run-
ning on the host [24], as well as remote offloading [23, 31] which,
combined with the VGPU, allows single-host out-of-process offload-
ing to identify memory mapping errors on the host. CUDA executed
through the LLVM/OpenMP infrastructure can be analyzed with
the same environment flags used for OpenMP offloading, namely:

LIBOMPTARGET_INFO=<bitset> to get high-level information about
memory movement and kernel execution;

LIBOMPTARGET_DEBUG=<bitset> to get verbose information about
the inner workings of the offloading runtime; and

LIBOMPTARGET_PROFILE=<json> to get a Chrome tracing compat-
ible profile file that lists the times of all device interactions.

In addition to development features, LLVM is equipped with an
increasing number of OpenMP-aware optimizations performed in
the middle-end compilation pipeline. The “OpenMP-opt” pass [17]
in LLVM does, for example, deduplicate calls to the same OpenMP
API function in a function scope if it is known that the function will
always return the same value. Given that our CUDA API wrappers
are implemented through OpenMP runtime functions, as shown
in Figure 2, CUDA code directly benefits from this deduplication.
Users can even verify this by adding -Rpass=openmp-opt to the
clang invocation. Future investment, e.g., host-to-device optimiza-
tions or latency hiding transformations, will directly benefit CUDA
codes as well. Similarly, currently developed runtime extension, e.g.,
specializing JIT compilation for OpenMP kernels, will be accessible
to foreign codes executed through the same infrastructure without
additional cost or involvement to the user.

To showcase capabilities that become accessible at no extra cost
we present the lightweight LLVM/OpenMP profiling and host ex-
ecution support for regular CUDA codes. Profiling is shown in
Figure 6 for the Lulesh CUDA benchmark (ref. Table 2) executed

on both NVIDIA (top) and AMD (bottom) GPUs. For the screen-
shots we used Chrome’s visualization of the raw profile data. The
first rows of each profile contain the trace while the bottom rows
summarize the time spent in particular LLVM/OpenMP runtime
functions. In this prototype we do not yet attribute source locations
to runtime invocations but the interface is already available and
can be used in the future.

Execution of CUDA code on the host is another benefit that
comes with the LLVM/OpenMP environment. Through the VGPU
offloading target the code is compiled and executed as if it was
offloaded to a GPU, except that the actual execution is happening on
the host CPU. Among the many benefits is the ability to use mature
CPU tooling for device side code. An example gdb session for the
SU3 benchmark (ref. Table 2) executed via the VGPU is presented in
Figure 7. While the VGPU is not yet available in community LLVM,
we did attach the open source prototype, which supports various
GPU builtins like warp shuffles, to our CUDA compiler the same
way we attached the CUDA and AMD plugin.

Thread 17 "su3" hit Breakpoint 1, k_mat_nn (a=0x[...]8b10, b=0x[...]
cb20, c=0x[...]cc50, total_sites=256) at ./mat_nn_cuda.hpp:22

22 int myThread = blockDim.x * blockIdx.x + threadIdx.x;

(gdb) bt

#0 k_mat_nn (a=0x[...]18b10, b=0x[...]1cb20, c=0x[...Jcc50,
total_sites=256) at ./mat_nn_cuda.hpp:22

#1 ox[...]dédd in ?? () from /usr/1ib64/1ibffi.so.7

#2 Ox[...]19a69 in VGPUTy::VGPUTy()::{lambda()#2}::operator()() ()

from [...]/1lib/libomptarget.rtl.vgpu.so

(gdb) print myThread

$2 =15

(gdb) next

25 if (mySite < total_sites) {

(gdb) cont

Continuing.

Thread 17 "su3" hit Breakpoint 2, k_mat_nn (a=<opt out>, b=<opt out>,
c=0x[...]cc50, total_sites=256) at ./mat_nn_cuda.hpp:32

32 CMULSUM(almySitel.1link[j].e[kI[m], b[j]l.e[m][1], cc);

(gdb) next

36 c[mySite].link[j].e[k][1] = cc;

(gdb) print cc

$3 = {real = 1, imag = @}

Figure 7: Exemplary gdb session to debug the SU3 CUDA
benchmark on the host. Compilation and execution via the

VGPU target is intentionally close to GPU offloading. This
hurts performance but improves debugability of GPU issues.

499

Breaking the Vendor Lock — Performance Portable Programming Through OpenMP as Target Independent Runtime Layer

PACT °22, October 8-12, 2022, Chicago, IL, USA

Table 1: CUDA API calls used by each benchmark

Plugin Implementation

API call XSBench RSBench LULESH SU3 Triad miniFE | NVIDIA AMD
cudaMalloc X X X X X x | Stable Stable
cudaMallocHost X ‘ Stable Basic
cudaMemcpy X X X X x | Stable Stable
cudaMemcpyAsync X ‘ Stable Basic
cudaFree X X X X X x | Stable Stable
cudaFreeHost X ‘ Stable Basic
cudaMemset x | Stable Stable
cudaDeviceSynchronize X X ‘ Stable Stable
cudaThreadSynchronize X x | Stable Stable
cudaGetDeviceProperties X X ‘ Stable Basic
cudaStreamCreate x | Stable Basic

Table 2: Benchmarks including brief summary and inputs.

Name Description Command Line
XSBench Monte Carlo neutron transport -m event -s
(ver. 19) algorithm large
RSBench Monte Carlo neutron transport -m event -s
(ver. 12) algorithm large
LULESH Proxy that approximates hydro- -i 100 -s 128
(ver.2.0) dynamic equations -r 11 -b 1 -c1
Lattice QCD SU(3) matrix- -i 100 -1 32 -t
SU3 . .
matrix multiply 128 -v 3 -w 1
. Tests data transfer speeds, part
Triad of the STREAM benchmark passes 100
miniFE Proxy for unstructured implicit -nx 128 -ny
(ver. 2.0) finite element codes 128 -nz 128

6 EVALUATION

Our evaluation is designed to answer one central question: Can
our target independent CUDA compiler prototype compete with
the respective native programming models on NVIDIA and AMD
GPUs without the need to change the source code in any way. To
this end, we compare our prototype to (a) state-of-the-art vendor
compilers for both NVIDIA and AMD devices with CUDA and HIP
inputs respectively, and (b) the LLVM/Clang compiler underlying
our prototype using the CUDA and HIP versions of the benchmark
to target their respective native architectures.

We used the six benchmarks listed in Table 2 which we run with
the shown input parameters. The source code was taken from the
HecBench! benchmark suite. Table 1 summarizes the CUDA API
calls present in each benchmark. Further descriptions are provided
with performance result discussions in Section 6.2.

!https://github.com/zjin-1cf/HeCBench

500

Table 3: Hardware and software of the evaluation platforms.

AMD + MI50 Power9 + V100

CPU l;gf)DGHF;PYC 7401 IBM Power9

cores 24 10

sockets 2 4

Main Memory 256 GB 256GB

GPU AMD Radeon In- NVIDIA Tesla V100-
stinct MI50 SXM2

GPU Memory 16 GB 16GB

o Software pocm vs.0.2 CUDA v11.1.0

(O RHEL v7.6 RHEL v8.5

6.1 Methodology

Our evaluation setup consists of two machines with AMD and
NVIDIA GPUs, respectively. Hardware and software stack details
are given in Table 3. We used the compilers distributed with the
software stack, thus ROCm v5.0.2 and CUDA v11.1.0, respectively.

For each benchmark and each machine we create three executa-
bles. The first is compiled using the vendor provided compilation
toolchain. So, for the NVIDIA system we use nvcc and for the
AMD system we use hipcc. We refer to this version in our plots
and discussion as vendor-cc. The second executable is always com-
piled through the original non-extended LLVM/Clang on which
our prototype is based on. It is a development commit designated
as LLVM 15. We refer to this version as clang-cc. Finally, the last
executable is created using our prototype that extends the LLVM/
Clang toolchain. We refer to this version as cuda-omp-cc. Notably,
when using the vendor compilers and unmodified LLVM/Clang

https://github.com/zjin-lcf/HeCBench

PACT °22, October 8-12, 2022, Chicago, ILJdHhnes Doerfert, Marc Jasper, Joseph Huber, Khaled Abdelaal, Giorgis Georgakoudis, Thomas Scogland, and Konstantinos Parasyris

we are required to compile the source version matching the GPU
vendor of the machine. HecBench provides equivalent CUDA and
HIP implementations for each benchmark, which we use for those
compilations. Our prototype always uses the CUDA source of each
benchmark regardless of the system.

For our performance evaluation, we measure the execution time
of each executable ten times and present all results as dots in the
plots. For all benchmarks, except Triad, we use the overall execution
time as reported by the benchmark. For Triad we add timing code
around the RunBenchmark function as there was no existing timer.

6.2 Experimental Results

In this section we present and discuss our experimental findings.

XSBench. XSBench is a proxy application for the Open Monte Carlo
(OpenMC) project. OpenMC [26] simulates the transport of neu-
trons and photons using the Monte Carlo methodology. This proxy
application [30] uses a memory-bound implementation to compute
the continuous energy macroscopic neutron cross-section lookup
when studying neutron transport.

Figure 8a shows the execution time of all six executables when
run on the two tested systems. Our performance portable proto-
type compiler (cuda-omp-cc) outperforms both the vendor compiler,
nvcc and hipcc, respectively, as well as the native LLVM/Clang
compiler. We used nvprof to extract execution traces on the Power9
+ V100 system. The execution time spent on all CUDA related oper-
ations, including the kernel, is statistically the same except for the
device allocation. Specifically, the cuda-omp-cc compiled version
spends 200ms less on allocating device data in comparison with
the other two executables. Note that the OpenMP offload runtime,
which resolves the cudaMalloc application call when cuda-omp-cc
is used, is employing cuMemAlloc internally, not cudaMalloc.

RSBench. RSBench is also a proxy application for the Open Monte
Carlo (OpenMC) project. However, RSBench [29] provides a compute-
bound alternative implementation to XSBench.

Figure 8b depicts the results of the RSBench experiments. For
both architectures the cuda-omp-cc compiled binaries achieved sig-
nificantly lower execution times. The traces of both nvprof and
rocproc for all executable versions indicate that the root cause of the
poor performance of the vendor-cc and clang-cc is the computation
of the main kernel (1ookup). As described in Section 4.2.3, the cuda-
omp-cc compilation executes two distinct optimizations pipelines.
In the first, math functions are only available as compiler-known
declarations. In the second, their target specific implementation has
been linked in. Only in this model we observed that math calls orig-
inally in the innermost loop, part of fast_nuclear_W, have been
hoisted out. To verify that this code movement is the reason of the
performance improvement we manually hoisted two completely
invariant sub-expressions out of the loop. For the vendor-cc gener-
ated executable, execution time is reduced by 0.3 and 3.3 seconds
on the Power9 + V100 and AMD + MI50 systems respectively. This
confirms that the observed performance gains are mainly due to the
dual optimization pipeline which allows math-knowledge aware
transformations before complex target specific implementations
are linked in.

501

LULESH. LULESH [16] is a hydrodynamics proxy app on hexahe-
dral mesh that approximates the Sedov problem. LULESH runs for
a number of iterations, during each a collection of node-centered
and element-centered properties are updated depending on the
previous values of neighboring nodes and elements.

Figure 8c presents the performance measurements of LULESH.
In the Power9 + V100 system both executables produced by LLVM/-
Clang (clang-cc and cuda-omp-cc) present a slow-down of approxi-
mately 10% compared to the vendor-cc executable. This indicates
that nvcc is generally more successful optimizing this benchmark.
For the AMD + MI50 system the results show a 1.14x slowdown
for cuda-omp-cc compared to the fastest version produced by the
standard LLVM/Clang. The difference stems from the fact that our
prototype compiler currently issues 1.113X more asynchronous
memory copies to the HSA runtime while copying the same over-
all amount of data. We believe the underlying cause to be in the
LLVM/OpenMP offload plugin for AMD which is not as mature as
the NVIDIA one. As the former plugin matures the execution time
gap on the AMD system should naturally disappear.

SU3Bench. SU3Bench implements a sparse matrix-matrix multiply
routine for the Special Unitary group of order 3 (hence SU(3)). This
kernel is extracted from MLIC-Lattice QCD [4], an application re-
lated to quantum chromodynamics (QCD) theory that studies the
strong interaction between quarks and gluons. While the bench-
mark is available in multiple languages and frameworks we only
used the CUDA and HIP versions for our evaluation.

Figure 8d shows the execution time for the SU3 benchmark. In
the Power9 + V100 systems the executables produced by LLVM/-
Clang (clang-cc and cuda-omp-cc) are 1.16X faster than the nvcc
produced version. On the AMD + MI50 system the performance
difference is smaller with the clang-cc compiled executable per-
forming best. The cuda-omp-cc version showcases a large deviation
across measurements. Observing the rocprof traces indicate the
cause to originate in the implementation of the LLVM/OpenMP
offload AMD plugin.

Triad. Triad is a benchmark stressing the bandwidth of the host-
device subsystem communication layer. Through asynchronous
CUDA APIs and CUDA streams the benchmark overlaps host-to-
device transfers, computations, and device-to-host transfers.

Figure 8e illustrates the performance measurements of Triad.
In the case of Power9 + V100 all compilers perform similarly. The
cuda-omp-cc compiled executable is the slowest version but overall
performance is not impacted significantly. Specifically, the cuda-
omp-cc executable is 4% slower than the vendor-cc one.

In the case of the AMD + MI50 system, using cuda-omp-cc results
in very poor performance. Currently, the LLVM/OpenMP offload
plugin for AMD does not implement streams, or an alternative
thereof. So, although we lower streams into the high-level stream
abstraction used by the OpenMP offload runtime, the plugin does
not make use of this information and serializes the transfers and
computation. Moreover, the AMD plugin does not implement the
pinned memory allocator interface as the NVIDIA plugin does.
Therefore, transfers between the host and the device are signifi-
cantly slower. These limitations of the current prototype will be
resolved as the AMD plugin implementation becomes more robust
and adds support for streams and pinned memory.

Breaking the Vendor Lock — Performance Portable Programming Through OpenMP as Target Independent Runtime Layer PACT °22, October 8-12, 2022, Chicago, IL, USA

Power9 + V100 AMD + MI50 Power9 + V100 AMD + MI50
3.00 [
. ee ® 10 e
n 2.75
3 o - o
€ 250 S
= F @
S 2.25 § 6
= 2
@ 2.00 £ 3 4
& . ¢ & -
1.75 -
& 2 = an
L < &L O . SN . <« (O _©
RO o9 RO 9 Ao) 9 & o «
N\ o O N\ o O N\ e O 0 o O
N o O @ o N N o WO N o G
(a) Execution times of XSBench. (b) Execution times of RSBench.
Power9 + V100 AMD + MI50 Power9 + V100 AMD + MI50
® 0.35 @5
— — &
O = . oa ?
@ @
£ » e £ 0.30
= 12 ~
& 5
% g 0.25
g 10 - = g
. w 0.20 = ©
do ' @»
L L _c© EES N ¥ < P < L P _©
RO R\ & 9 «° QT S «° RO «°
) o 0 A\ % 0 O7 @ 0 O7 @ 0
N o O N o G N o N N o NG
(c) Execution times of Lulesh. (d) Execution times of SU3.
Power9 + V100 AMD + MI50 Power9 + V100 AMD + MI50
L 22 - @
O @ -
20
@ @
g 60 £
= F 18
c c
2 k)
3 40 g 16
% %
w - - w14 -
-
20 * * 12 ™
o« O pe & O < o« O © O ©
QT 09 «© QT 0 «Q QT 09 «© QT 0 «Q
N N O N N) 3\ e 0 N " O
\@ © o N N © o WP \@ © o N N © o G
(e) Execution times of Triad. (f) Execution times of MiniFE.
Figure 8: Evaluation results for the six benchmarks described in Table 2.
MiniFE. MiniFE is a proxy application for unstructured implicit 7 RELATED WORK

finite element codes. It is similar to HPCCG but provides a much
more complete vertical covering of the steps in this class of appli-
cations. Templates are used to implement different sparse matrix
structures and different data types, e.g., single and double precision.

Figure 8f illustrates the results for MiniFE. The LLVM/Clang
compiled executable on the NVIDIA machine shows an overhead
of 10% in comparison to the vendor compiled version. In the AMD +
MI50 system the cuda-omp-cc presents a similarly modest speedup
of 1.10x and 1.04x compared to vendor-cc and clang-cc respectively.

Performance portability solutions for GPGPU programming usually
take the form of either programming models with their own com-
piler, or libraries that abstract over multiple programming models.

The first set includes OpenMP [22] since version 4, OpenCL [1],
and SYCL [25] for compute, OpenGL [10] and Vulkan [11] for graph-
ics and a variety of smaller competitors. These all provide at least
portability across different hardware targets, with varying degrees
of difficulty and performance tuning requirements, but given a pro-
gram that has already been ported to CUDA none of them are an

502

PACT °22, October 8-12, 2022, Chicago, ILJdHhnes Doerfert, Marc Jasper, Joseph Huber, Khaled Abdelaal, Giorgis Georgakoudis, Thomas Scogland, and Konstantinos Parasyris

easy target. The HIP [3] model technically also counts as portable
since it can target either AMD or NVIDIA hardware, and with some
caveats SYCL with HIPSYCL [2], but it requires code to either be
ported or kept compliant with the requirements of hipify.

The second set includes Kokkos [9], RAJA [15] and even the
parallel algorithms in C++17 [19]. Because these must abstract over
existing programming models, they tend to provide higher level
interfaces, and incur more overhead and more porting effort coming
from code that is already written in a SIMT style and often utilizes
“low-level” CUDA builtins.

There have been other efforts to interpose between CUDA and
the hardware as well. Some of the oldest include efforts to tar-
get CPUs with CUDA, after simulator support was removed from
CUDA, in the form of Ocelot [5, 6], MCUDA [27], COX [13], CuP-
BoP [12], and a commercial offering PGI CUDA C/C++ for x86 [18].
All allow for (some) portability to the CPU, with some limitations
in terms of performance. None can target other GPU platforms.
Through the virtual GPU OpenMP target [24] our approach is also
able to offload CUDA to most CPU architectures supported by
LLVM/Clang, though not necessarily with the best performance.

A recent research project [14] ports parts of device side CUDA
code to SPIR-V in order to execute it on RISC-V GPUs. However,
this is only a partial solution for key builtins and, most importantly,
it requires manual porting of host and registration code.

The RCUDA [8] project, the OpenMP Cluster programming
model [31], and the remote offloading plugin for LLVM [23] al-
low a program on one node to transparently access resources, e.g.
the NVIDIA GPUs, on another node. This allows for more flexible
use of GPUs, but does not help with porting to other architectures.

The official hipify translator that’s part of HIP could be thought
of as a source-to-source translator from CUDA to HIP, though it
leaves nearly all compute code alone. CU2CL [21] does a source-to-
source rewrite from CUDA to OpenCL, but due to the significant
differences in semantics, especially OpenCL’s lack of a single-source
option for host and kernel code intermixed, usually requires the
code to be maintained in OpenCL after translation. Martini [20] pro-
vides configurable alternative to such source-to-source translation
tools as shown by their hipify clone.

8 FUTURE WORK

There are four major areas for improvement towards fully interop-
erable and performance portable parallel programming languages.
The first three can closely follow the approach taken in this work
while the fourth requires innovative and new solutions.

(1) Provide wrappers for the HIP and SYCL specific APIs and builtins.
While not conceptually different from the wrapped CUDA APIs
and builtins, new wrappers are necessary to translate those lan-
guages to the OpenMP intermediate layer. Full interoperability
with CUDA and OpenMP will follow.

Provide (extended) plugins for Intel GPUs and other offload
targets to allow all supported languages to offload to those. While
there are open source Intel GPU plugins, they are not merged
into community LLVM yet and maturity is unclear.

Extend the wrappers around user facing CUDA APIs. This in-
cludes core language APIs, e.g., all functions with the cuda prefix,
but not necessarily support libraries such as NVIDIA’s CUB or

@)

3

~

503

Thrust. Inline assembly support might be required for certain
applications but one could imagine portable function calls as
alternatives for some use cases.

Provide a high-level wrapper library to implement or replace
the interfaces of common vendor support libraries, e.g. NVIDIA
Thrust. There are various benefits of intercepting calls early. The
interfaces of equivalent libraries by other vendors, e.g., ROCm
Thrust, are designed to be similar but not necessarily identical
drop-in replacements. To this end, we imagine calls to a wrapper
library, like “OpenMP Thrust”, which redirects to the appropri-
ate vendor implementation. Alternatively, to avoid application
changes, one could also imagine that the OpenMP wrapper di-
rectly exposes the same user facing functions, hence with the
same name and in the same namespace, as existing libraries.

9 CONCLUSION

In this work we have shown that portability of, and interoperability
between, offloading languages is possible using mostly existing
compiler technology alone. By redesigning the compilation flow,
deliberately choosing abstraction layers, and providing target inde-
pendent implementations for language APIs and builtins, users can
be freed from porting efforts and the burden to maintain multiple
program versions. While initial results clearly show the potential,
there is more work to do to stabilize the environment, integrate
all parts into LLVM, and find suitable solutions for high-level li-
braries, e.g., NVIDIA’s Thrust. However, we believe this work shows
that full interoperability and performance portability of parallel pro-
gramming languages does not require a more diverse set of new
models. Instead, we need convergence the toolchains and compi-
lation schemes that have evolved over time to unify the handling
of existing offloading languages. Supporting different languages,
syntaxes, and abstraction layers is only beneficial if we collapse
the underlying ecosystem to benefit from advances at this level
throughout the entire application world. Further, we believe uni-
fication will free effort that we can redirect towards performance
optimizations, debugging solutions, and general tooling in a way
that will make HPC better for any and all applications.

ACKNOWLEDGMENTS

Part of this research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of two U.S. Department
of Energy organizations (Office of Science and the National Nu-
clear Security Administration) responsible for the planning and
preparation of a capable exascale ecosystem, including software,
applications, hardware, advanced system engineering, and early
testbed platforms, in support of the nation’s exascale computing
imperative.

The views and opinions of the authors do not necessarily re-
flect those of the U.S. government or Lawrence Livermore National
Security, LLC neither of whom nor any of their employees make
any endorsements, express or implied warranties or representa-
tions or assume any legal liability or responsibility for the accu-
racy, completeness, or usefulness of the information contained
herein. This work was partially prepared by LLNL under Contract
DE-AC52-07NA27344 (LLNL-CONF-834862) and was supported by
the LLNL-LDRD Program under Project No. 20-ERD-018.

Breaking the Vendor Lock — Performance Portable Programming Through OpenMP as Target Independent Runtime Layer

REFERENCES

[1

(71

(8]

[10

[11]
[12]

[13]

[14

[15]

[16]
[17]

[18

[19]

™
=

[21

[22]

[23]

[24]

2012. The OpenCL Specification. https://www.khronos.org/registry/cl/specs/
opencl-1.2.pdf.

Aksel Alpay. 2022. hipSYCL - a SYCL implementation for CPUs and GPUs.
https://github.com/illuhad/hipSYCL.

AMD. 2022. AMD HIP Programming Model. https://github.com/ROCm-
Developer-Tools/HIP.

Carleton DeTar, Steven Gottlieb, Ruizi Li, and Doug Toussaint. 2018. MILC Code
Performance on High End CPU and GPU Supercomputer Clusters. In EPJ Web of
Conferences. EDP Sciences.

Gregory Frederick Diamos, A Kerr, and M Kesavan. 2009. Translating GPU
binaries to tiered SIMD architectures with Ocelot. (2009).

Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili, and
Nathan Clark. 2010. Ocelot: a dynamic optimization framework for bulk-
synchronous applications in heterogeneous systems. In International Conference
on Parallel Architectures and Compilation Techniques. ACM. https://doi.org/10.
1145/1854273.1854318

Johannes Doerfert, Joseph Huber, and Melanie Cornelius. 2021. Advancing
OpenMP Offload Debugging Capabilities in LLVM. In ICPP Workshops 2021:
50th International Conference on Parallel Processing, Virtual Event / Lemont (near
Chicago), IL, USA, August 9-12, 2021, Federico Silla and Osni Marques (Eds.). ACM,
20:1-20:8. https://doi.org/10.1145/3458744.3473358

José Duato, Antonio J Pena, Federico Silla, Rafael Mayo, and Enrique S Quintana-
Orti. 2010. rCUDA: Reducing the number of GPU-based accelerators in high
performance clusters. In 2010 International Conference on High Performance Com-
puting & Simulation. IEEE, 224-231.

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:
Enabling Manycore Performance Portability Through Polymorphic Memory
Access Patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202 — 3216.
https://doi.org/10.1016/j.jpdc.2014.07.003 Domain-Specific Languages and High-
Level Frameworks for High-Performance Computing.

Khronos Group. 2022. The OpenGL Specification. https://www.opengl.org/.
Khronos Group. 2022. The Vulkan Specification. https://www.vulkan.org/.
Ruobing Han, Jun Chen, Bhanu Garg, Jeffrey Young, Jaewoong Sim, and Hyesoon
Kim. 2022. CuPBoP: CUDA for Parallelized and Broad-range Processors. CoRR
abs/2206.07896 (2022). arXiv:2206.07896 https://doi.org/10.48550/arXiv.2206.
07896

Ruobing Han, Jaewon Lee, Jaewoong Sim, and Hyesoon Kim. 2021. COX: CUDA
on X86 by Exposing Warp-Level Functions to CPUs. CoRR abs/2112.10034 (2021).
arXiv:2112.10034 https://arxiv.org/abs/2112.10034

Ruobing Han, Blaise Tine, Jaewon Lee, Jaewoong Sim, and Hyesoon Kim.
2021. Supporting CUDA for an extended RISC-V GPU architecture. CoRR
abs/2109.00673 (2021). arXiv:2109.00673 https://arxiv.org/abs/2109.00673

RD Hornung and JA Keasler. 2014. The RAJA Portability Layer: Overview and
Status. Technical Report. Lawrence Livermore National Laboratory (LLNL),
Livermore, CA.

R. D. Hornung, J. A. Keasler, and M. B. Gokhale. 2011. Hydrodynamics challenge
problem. (6 2011). https://doi.org/10.2172/1117905

Joseph Huber, Melanie Cornelius, Giorgis Georgakoudis, Shilei Tian, Jose
Manuel Monsalve Diaz, Kuter Dinel, Barbara M. Chapman, and Johannes Doer-
fert. 2022. Efficient Execution of OpenMP on GPUs. In IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2022, Seoul, Korea, Repub-
lic of, April 2-6, 2022, Jae W. Lee, Sebastian Hack, and Tatiana Shpeisman (Eds.).
IEEE, 41-52. https://doi.org/10.1109/CG053902.2022.9741290

Portland Group International. 2022. PGI CUDA C/C++ for x86. https://developer.
nvidia.com/pgi-cuda-cc-x86.

ISO/IEC. 2017. ISO International Standard ISO/IEC 14882:2017 - Programming
Languages — C++. https://www.iso.org/standard/68564.html.

Alister Johnson, Camille Coti, Allen D. Malony, and Johannes Doerfert. 2022.
MARTINI: The Little Match and Replace Tool for Automatic Application Rewrit-
ing with Code Examples. In Euro-Par 2022: Parallel Processing - 28th International
Conference on Parallel and Distributed Computing, Glasgow, UK, August 22-26,
2022, Proceedings (Lecture Notes in Computer Science, Vol. 13440), José Cano and
Phil Trinder (Eds.). Springer, 19-34. https://doi.org/10.1007/978-3-031-12597-3_2
Gabriel Martinez, Mark Gardner, and Wu-chun Feng. 2011. CU2CL: A CUDA-
to-OpenCL translator for multi-and many-core architectures. In 2011 IEEE 17th
International Conference on Parallel and Distributed Systems. IEEE, 300-307.
OpenMP ARB. 2008. OpenMP Application Programming Interface Version 5.2.
https://www.openmp.org/wp-content/uploads/OpenMP- API-Specification-
5-2.pdf. https://www.openmp.org/wp-content/uploads/OpenMP- API-
Specification-5-2.pdf

Atmn Patel and Johannes Doerfert. 2022. Remote OpenMP offloading. In PPoPP
°22: 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, Seoul, Republic of Korea, April 2 - 6, 2022, Jaejin Lee, Kunal Agrawal, and
Michael F. Spear (Eds.). ACM, 441-442. https://doi.org/10.1145/3503221.3508416
Atmn Patel, Shilei Tian, Johannes Doerfert, and Barbara M. Chapman. 2021. A
Virtual GPU as Developer-Friendly OpenMP Offload Target. In ICPP Workshops

PACT °22, October 8-12, 2022, Chicago, IL, USA

2021: 50th International Conference on Parallel Processing, Virtual Event / Lemont
(near Chicago), IL, USA, August 9-12, 2021, Federico Silla and Osni Marques (Eds.).
ACM, 24:1-24:7. https://doi.org/10.1145/3458744.3473356

Ruyman Reyes and Victor Lomiiller. 2016. SYCL: Single-source C++ accelerator
programming. In Parallel Computing: On the Road to Exascale. IOS Press, 673-682.
Paul K. Romano, Nicholas E. Horelik, Bryan R. Herman, Adam G. Nelson, Benoit
Forget, and Kord Smith. 2015. OpenMC: A State-of-the-Art Monte Carlo Code for
Research and Development. Annals of Nuclear Energy (2015). https://doi.org/10.
1016/j.anucene.2014.07.048 Joint International Conference on Supercomputing in
Nuclear Applications and Monte Carlo 2013, SNA + MC 2013. Pluri- and Trans-
disciplinarity, Towards New Modeling and Numerical Simulation Paradigms.

[27] John A. Stratton, Sam S. Stone, and Wen-mei W. Hwu. 2008. MCUDA: An

Efficient Implementation of CUDA Kernels for Multi-core CPUs. In Languages
and Compilers for Parallel Computing, 21th International Workshop, LCPC 2008,
Edmonton, Canada, July 31 - August 2, 2008, Revised Selected Papers (Lecture
Notes in Computer Science, Vol. 5335), José Nelson Amaral (Ed.). Springer, 16-30.
https://doi.org/10.1007/978-3-540-89740-8_2

Shilei Tian, Jon Chesterfield, Johannes Doerfert, and Barbara M. Chapman.
2021. Experience Report: Writing a Portable GPU Runtime with OpenMP 5.1. In
OpenMP: Enabling Massive Node-Level Parallelism - 17th International Workshop
on OpenMP, IWOMP 2021, Bristol, UK, September 14-16, 2021, Proceedings (Lecture
Notes in Computer Science), Simon McIntosh-Smith, Bronis R. de Supinski, and Jan-
nis Klinkenberg (Eds.). Springer. https://doi.org/10.1007/978-3-030-85262-7_11

[29] John R. Tramm, Andrew R. Siegel, Benoit Forget, and Colin Josey. 2014. Per-

formance Analysis of a Reduced Data Movement Algorithm for Neutron Cross
Section Data in Monte Carlo Simulations. In EASC 2014 - Solving Software Chal-
lenges for Exascale. Stockholm. https://doi.org/10.1007/978-3-319-15976-8_3

[30] John R. Tramm, Andrew R. Siegel, Tanzima Islam, and Martin Schulz. 2014.

XSBench - The Development and Verification of A Performance Abstraction for
Monte Carlo Reactor Analysis. The Role of Reactor Physics toward a Sustainable
Future (PHYSOR) (2014).

Hervé Yviquel, Marcio Pereira, Emilio Francesquini, Guilherme Valarini, Gustavo
Leite, Pedro Rosso, Rodrigo Ceccato, Carla Cusihualpa, Vitoria Dias, Sandro Rigo,
et al. 2022. The OpenMP Cluster Programming Model. In The Second Workshop
on LLVM in Parallel Processing (LLPP).

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://github.com/illuhad/hipSYCL
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://doi.org/10.1145/1854273.1854318
https://doi.org/10.1145/1854273.1854318
https://doi.org/10.1145/3458744.3473358
https://doi.org/10.1016/j.jpdc.2014.07.003
https://www.opengl.org/
https://www.vulkan.org/
https://arxiv.org/abs/2206.07896
https://doi.org/10.48550/arXiv.2206.07896
https://doi.org/10.48550/arXiv.2206.07896
https://arxiv.org/abs/2112.10034
https://arxiv.org/abs/2112.10034
https://arxiv.org/abs/2109.00673
https://arxiv.org/abs/2109.00673
https://doi.org/10.2172/1117905
https://doi.org/10.1109/CGO53902.2022.9741290
https://developer.nvidia.com/pgi-cuda-cc-x86
https://developer.nvidia.com/pgi-cuda-cc-x86
https://www.iso.org/standard/68564.html
https://doi.org/10.1007/978-3-031-12597-3_2
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.1145/3503221.3508416
https://doi.org/10.1145/3458744.3473356
https://doi.org/10.1016/j.anucene.2014.07.048
https://doi.org/10.1016/j.anucene.2014.07.048
https://doi.org/10.1007/978-3-540-89740-8_2
https://doi.org/10.1007/978-3-030-85262-7_11
https://doi.org/10.1007/978-3-319-15976-8_3

	Abstract
	1 Introduction
	2 Contributions and Limitations
	3 Background
	4 Approach
	4.1 Original Language Dependencies
	4.2 Portable Offloading

	5 LLVM/OpenMP Ecosystem
	6 Evaluation
	6.1 Methodology
	6.2 Experimental Results

	7 Related Work
	8 Future Work
	9 Conclusion
	Acknowledgments
	References

