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Abstract Multi-core processors support all modern electronic devices nowadays. However, power

management is one of the most critical issues in the design of today’s microprocessors. The goal of

power management is to maximize performance within a given power budget. Power management

techniques must balance between the demanding needs for higher performance/throughput and the

impact of aggressive power consumption and negative thermal effects. Many techniques have been

proposed in this area, and some of them have been implemented such as the well-known DVFS

technique which is used in nearly all modern microprocessors. This paper explores the concepts

of multi-core, trending research areas in the field of multi-core processors and then concentrates

on power management issues in multi-core architectures. The main objective of this paper is to sur-

vey and discuss the current power management techniques. Moreover, it proposes a new technique

for power management in multi-core processors based on that survey.
� 2015 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The evolution of multi-core processors led to the evolution of
many research areas. Before the appearance of multi-core pro-
cessors, the speed of microprocessors increased exponentially

over time. More speed requires more transistors. Moore [1]
observed that the number of transistors doubles approximately
every two years. With the rapid increase in speed, the number

of transistors in processors increased in a way that it can’t scale
to Moore’s law anymore as an extremely huge number of tran-
sistors switching at very high frequencies means extremely high

power consumption. Also, the need for parallelism increased
and the instruction level parallelism [2] was not sufficient to
provide the demanding parallel applications. So the concept
of multi-core was introduced by Olukotun et al. [3], to design

more simple cores on a single chip rather than designing a huge
complex one. Now all modern microprocessor designs are
implemented in a multi-core fashion. Multi-core advantages

can be summarized as follows:

� A chip multiprocessor consists of simple-to-design cores

� Simple design leads to more power efficiency
� High system performance in parallel applications where
many threads need to run simultaneously
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Introducing multi-core processors aroused many related
areas of research. Dividing code into threads, each can run
independently is very important to make use of the power of

the multi-core approach. However, not all code can be divided
in such a manner. That issue was described by Amdhal in [4]
which concludes that maximum speedup is limited by the serial

part and that is called the serial bottleneck. Serialized code
reduces performance expected by the processor; it also wastes
lots of energy. Also, the parallel portion of the code is not
completely parallel because of many reasons such as synchro-

nization overhead, load imbalance and resources contention
among cores. The serial bottleneck research led to the evolu-
tion of asymmetric multi-core processors [5].

The concept of asymmetric multi-core processors implies
that the design would include one large core and many small
cores. The serial part of the code will be accelerated by moving

it to the large core and the parallel part is executed on the small
cores. This accelerates both the serial part by using the large
core and the parallel part as it will be executed simultaneously

on the small cores and the large core to achieve high through-
put. Using asymmetric cores can be more energy efficient too.
In [5] Mark et al. described how asymmetry can be achieved.
They divided it into static and dynamic methods. For static

methods, cores may be designed at different frequencies or a
more complex core with completely different micro-
architecture may be designed. In dynamic methods, frequencies

can be boosted dynamically on demand or small cores may be
combined to form a dynamic large core and this is described in
detail in [6]. Other research topics related to multi-core proces-

sors that emerged include the following: power management,
memory hierarchies in multi-core processors, the design of
interconnection networks in multi-core processors, heteroge-
neous computing in multi-core processors, reliability issues in

multi-core processors and parallel programming techniques.
In power management, the main objective is to reach the max-
imum performance of the processors without exceeding a given

total power budget for the chip. There has been lots of research
on power management in chip multiprocessors. Here we are
going to discuss most of those techniques [7] and some modern

works that try to optimize the efficiency of these techniques. In
this paper we examine all popular techniques in detail and how
they work to minimize performance losses while saving power.

We investigate the suitable technique for each case (workloads,
power budget available, critical systems) and how to make
these techniques even more suitable for their cases.

This paper makes the following contributions:

� Listing almost all the used techniques for power manage-
ment in multi-core processors, discussing them in terms of

advantages and disadvantages (performance loss, power
saving, suitable cases) and providing a comparison between
them.

� Examining some of the improvements added to each of
these techniques to make them even better.

� Proposing a new adaptive control mechanism for power

management in asymmetric multi-core processors.
� Suggesting further research to be done in some of the inves-
tigated techniques/scenarios.

The rest of this paper is organized as follow: Section 2
introduces the historical improvements in the microprocessor
design, explains how we have reached the multicore era and
mentions the main issues associated with multicore processors.
Section 3 starts to focus on the power management issue,

showing the importance of handling such a problem and pro-
viding a proper problem formulation. It continues to explain
almost all the current techniques used in the power manage-

ment field in modern processors, showing the advantages
and disadvantages of each one and the research done to try
to solve each shortage. Section 4 proposes a new mechanism

for power management in asymmetric multicore processors.
Finally, we conclude in Section 5 by reviewing the most impor-
tant ideas that were presented in the paper.

2. Background

The performance of microprocessors has increased exponen-

tially over years. Techniques have been devised to achieve paral-
lelism, starting from pipelining, passing by super-scalar
architectures and finally the chip multiprocessors or multicore
processors.Herewe shed light on the various levels of parallelism

and how consequent technologies tried to exploit each level.

2.1. Levels of parallelism

Each one of these techniques exploits some levels of paral-
lelism which can be listed as follows:

(1) Instruction level parallelism

In this level, architectures make use of independent instruc-
tions (the operands of one instruction do not depend on the

result of another one) that exist in the instructions streams
to execute them concurrently.

(2) Basic Block level

A block can be considered a set of instructions that end

with a branch. Modern architectures were able to exploit this
level of parallelism among basic blocks with the help of
advanced branch predictors

(3) Loop iterations

Some types of loops work on independent data in each iter-

ation of the loop. So, it is possible in these loops to run differ-
ent iterations concurrently in superscalar architectures for
example.

(4) Tasks

A task signifies an independent function extracted from one
application. It can also be called a thread. Software developers
have to divide their code into independent threads to make use

of this level of parallelism in multiprocessors systems, where
each thread can run independently on a dedicated core.

2.2. Advances in processor microarchitecture

Over the years, there have been many trials to exploit better
parallelism as shown in Fig. 1; advances in architecture can
be viewed as follows:



Figure 1 Advances in microprocessor design over time.
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2.2.1. Single-cycle processor

This technique was used in very early microprocessors. The
key concept is that the whole instruction is executed at once
in one clock cycle. Whenever an instruction has started to exe-

cute, all other instructions in the instruction stream have to
wait until it fully finishes its execution. Of course, some
instructions take lots of execution/waiting time which affects
the execution of other instructions and degrades overall system

performance (see Fig. 2a).

2.2.2. Pipelining

Instead of executing the whole instruction at once, pipelining
divides the single-cycle processor into many stages; in each
stage, a portion of the instruction is executed concurrently
with another portion of another instruction. For example, if

we have a three-stage pipelined processor that means the
single-cycle processor is divided into three stages, let them
be, for example, FETCH OPERANDS, DECODE and EXE-

CUTE. Then, we can execute three instructions simultane-
ously. At clock cycle 3, the first instruction will be in the
EXECUTE stage, while the second instruction will be in

the DECODE stage and the third instruction would be
in the FETCH OPERANDS stage. That obviously diminishes
the drawback of long wait times in long instructions (see
Fig. 2b). It exploits the instruction level parallelism where mul-

tiple instructions can be executed concurrently. On the other
Figure 2 Difference between (a) single-cycl
hand, pipelining introduces logic overhead in each stage of
the pipeline. Also, some data dependency hazards occur when

two dependent instructions are executed concurrently. How-
ever, many techniques were proposed to overcome such
hazards.

2.2.3. Deep pipelining

The idea of deep pipelining [8] is to increase the number of
pipeline stages significantly. It is obvious from the discussion

about the pipelined processor that the more stages you add,
the faster execution you get. That is of course valid to a certain
extent. Common pipelines have up to 20 stages. The number of

stages is greatly limited by many factors such as the existing
hazards and the logic overhead. As we mentioned before in
the pipelined processor, many techniques has been devised to
overcome the data dependency problem. These techniques

include, but not limited to, forwarding, stalling and register
renaming.

2.2.4. Super scalar processor

One of the main bottlenecks in the pipelined processor design
is that however many instructions can run at different phases
in the same time, the pipeline can only be initiated with one

instruction. A superscalar processor is the one that contains
multiple copies of the whole datapath (including the ALU)
which makes it possible to issue as many instructions as the
e processor and (b) pipelined processor.



Figure 3 A tree diagram of the most common power management techniques.
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number of the copies is. Each instruction runs almost indepen-
dently as it has its own dedicated datapath. Superscalar pro-
cessors concepts have always been combined with pipelined
processors concepts to introduce the pipelined superscalar pro-

cessor which has been commonly used in the 1990s and early
2000s. The basic operation of a superscalar processor includes
fetching and decoding a stream of instructions, branch predic-

tion, figuring out whether there are any dependencies among
instructions and finally the distribution of instructions to dif-
ferent functional units to be issued [9]. It provides great

enhancements in the overall performance/throughput of the
system. However, not many instructions can run at the same
time because of the dependency problem explained in the pipe-
lined processors. Moreover, the number of issued instructions

is limited. Also, it introduces lots of hardware overhead mean-
ing larger areas and more power consumption.

2.2.5. OoO (Out-of-Order) processors

OoO processors look ahead across instruction window to find
independent instructions that can be executed immediately.
This means, instructions are not executed in the order they

were written in. Once the operands of an instruction are avail-
able, the instruction is executed regardless of the sequence of
the program. OoO processors solve the problem of dependen-

cies introduced in the pipelined superscalar processor. How-
ever, they introduce additional hardware overhead and
energy consumption for speculation.

2.2.6. Chip multiprocessors

Chip multiprocessors or multi-core processors exploit thread
level parallelism efficiently. A process is a program currently

in execution. Each process consists of one or more threads.
For example, a server application would have at least two
threads, one for listening to incoming connections and another

one for outgoing connections. No thread has to wait for the
other to finish as they execute concurrently. In traditional
uniprocessor systems, multi-threading is not well utilized.
The uniprocessor provides an illusion that threads run concur-

rently but in fact a fast switch is done between threads of the
same process (which is way faster than switching between pro-
cesses). Multi-core architectures appeared to extract as much

parallelism as possible from the thread level parallelism. In a
multi-core processor, each thread runs independently on a ded-
icated core (real parallelism). Hence, great enhancements are
made to the overall throughput of the system. However, many
issues came up such as the problem of designing the appropri-

ate memory hierarchy, the data locality problem, the design of
interconnection networks, maintaining the reliability and
validity of the processor and power management. In this

paper, we are discussing the power management issue in
multi-core processors and the techniques proposed and used
in that area.

3. Power management techniques

Power management has become a major issue in the design of

multi-core chips. There are many negative effects that result
from increasing power consumption such as unstable thermal
properties of the die and hence affecting the system perfor-

mance which makes power consumption issue sometimes more
important than speed. An important observation is that
threads running on different cores do not need the same power
all time to execute at high performance. There are some wait-

ing times due to memory read/write operations for example
which require saving unnecessary processing power. So, to
achieve a good balance between scalar performance/through-

put performance and power it is essentially required to dynam-
ically vary the amount of power used for processing according
to temporal analysis of the code needs.

Developed power management techniques can be classified
into two main categories: reactive and predictive. In reactive
techniques, the technique reacts to performance changes in
the workload. In other words, a workload may initially have

states that need high performance, others of I/O waits and
low performance. When the state of the workload changes,
the technique reacts to that change accordingly. However,

there might be some lag between workload phase changes
and power adaptation changes which may lead to states of
either in-efficient energy consumption or performance degra-

dation. On the other hand, predictive techniques, for example
[10], overcome this issue. Those techniques predict phase
changes in the workload before they happen, and hence act

immediately before a program phase changes. That leads to
optimal energy-saving and performance results. However,
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there is no workload that can be fully predicted, so reactive
techniques are used for portions that cannot be predicted
(which is usually more than 60% of the entire workload).

So, reactive techniques are inevitable to use and consequently
we concentrate in this study on those techniques. Here, we are
examining some of the dynamic techniques as shown in Fig. 3

to achieve the best level of power management in multi-core
processors. We also discuss some issues related to each of these
techniques and how previous research attempted to handle

these issues.
Problem formulation can be viewed as follows: all

techniques assume there is an on-chip or on-board hardware
controller for power management which contains all the hard-

ware and circuitry required for performing its job. The con-
troller is always supported by some firmware and software
that give directives for implementing the specific technique or

algorithm. Fig. 4 shows a high-level view of the power manage-
ment process assuming a global on-chip power management
controller. The system-level controller directs the global on-

chip controller toward a specific power budget. The global
on-chip controller monitors power-performance statistics from
all cores and dependently takes the required action. That

action depends on the algorithm/technique used (for example,
change voltage as in DVFS, cut-off power of specific portions
as in power-gating techniques).
Figure 4 High-level view of dynamic power management

problem.

Figure 5 Feedback closed-loop representatio
Techniques can be evaluated in terms of power efficiency. A
common metric for the evaluation of power efficiency is energy
per instruction (EPI in Watt/MIPS or Joule/Instruction).

Other metrics such as energy delay product (EDP), which
was initially proposed by Horowitz et al. [11], and ED2P are
used also in latency performance architectures as they assign

a weight to the amount of time needed for an instruction to
be processed. Obviously, techniques that achieve lower EPI
are more energy-efficient. The main objective of almost all

techniques is achieving high Instruction per Cycle (IPC) while
maintaining low EPI. That balance is the main concern of
almost all the research done on power management in
microprocessors.

The power management process can be viewed as a feed-
back closed-loop control system. Power budget is considered
the desired input coming from the system-level control system.

And there is an on-chip or on-board controller that adjusts
some parameters (such as voltage and frequency) based on
the monitoring process (feedback) coming from the individual

cores of the chip in a closed-loop and so on. Monitoring power
consumption has been a hot research topic for many years. For
any powersaving mechanism, it needs to monitor consumed

power to guide its decision. Mainly, Performance Monitoring
Counters (PMCs) are used to obtain power models. Examples
of research done on that point are included [12–15] as exam-
ples. This representation leads us to another point which is

as follows: as power management control systems can be
viewed as feedback control system. That implies that they have
regions of instability which require in turn providing guarding/

security mechanism for power management which is out of the
scope of this paper. Fig. 5 illustrates that concept.

3.1. Dynamic voltage and frequency scaling

3.1.1. Basic concept

The idea of using dynamic voltage and frequency scaling in
power management in microprocessor systems was originally
invented by Weiser et al. in 1996 [16]. The power consumption
is mainly governed by the following equation:

P ¼ CV2F ð1Þ
where P is the power, C is the switching capacitance, V is the
supplied voltage and F is the working frequency.

It’s very obvious that we can control the amount of con-
sumed power by simply adjusting voltage–frequency pairs.
This method has been widely used to achieve different Energy
per Instruction (EPI) ratios. It has been commercially intro-

duced under many names such as Intel’s SpeedStep
technology, AMD’s PowerNow! The main idea is to adjust
n of power management control system.
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voltage–frequency pairs within a set of discrete, predefined
pairs to achieve the required power/performance level. In other
words, for heavy parallel workloads, many cores run at low

voltage–frequency pair. However, for scalar workloads which
include a big portion of serial code, it is reasonable to run
few cores, and boost their frequency to adapt to the required

task. Fig. 6 explains this concept. DVFS management system
for a dual-core processor can be viewed graphically as in
figure.

The system level controller directs the global on-chip or on-
board controller with the desired power budget. The global
controller monitors voltage, frequency and IPC (power usage)
of each core. Depending on these parameters, the controller

actuates voltage and/or frequency as required. The same
concept is applied through all power management techniques
as previously explained, and the main difference lies in the

algorithm itself. Machine learning algorithms (especially rein-
forcement learning) have been recently used to perform DVFS
[17–21]. Using these techniques led to even better results on

both the performance and energy saving metrics.
DVFS has not been only used in general purpose applica-

tions. It is widely applied to almost all modern processors in

embedded systems [22]. Also, it can be used in real-time
applications. For example in [23], DVFS is used along with a
checkpointing technique for consumed power reduction in
reliability-guaranteed real-time applications. That study

proves that with the use of backward fault recovery technique,
DVFS can achieve highest system reliability while consuming
minimal amount of energy.

3.1.2. Determination of the suitable voltage-frequency setting

As mentioned, the default on demand linux governor chooses
voltage–frequency pairs from a set of predefined, discrete val-

ues. That’s not very power efficient as the required voltage–
frequency pair may be not exactly one of the predefined values.
Kamga et al. [24] proposed an approach for precise determina-

tion of the required frequency for current workload. Kamga
suggests a method to precisely determine the required fre-
quency based on the high and low threshold and number of

occurrences of each of them. The method ends up with the
required frequency to be
Figure 6 High-level graphical view of DVFS applied to a dual-

core processor.
fhost ¼
fhigh � thigh
� �þ flow � tlowð Þ

thigh þ tlow
ð2Þ

where fhost is the required frequency, fhigh is the high threshold
frequency, thigh is the number of occurrences of that frequency

and similarly for the low threshold.

3.1.3. DVFS levels of granularity

DVFS can be applied either per chip or per core. Applying

DVFS per core introduces much flexibility as each core would
have its own voltage–frequency pair. However, that incurs at
the expense of a large number of on-chip voltage regulators.

On the other hand, applying DVFS on the chip level reduces
that expense but limits flexibility as the same voltage would
be applied to all cores regardless of the special needs of each

individual core. It is extremely difficult to determine a single
Voltage–Frequency setting that satisfies all cores needs simul-
taneously. In [25] Kolpe et al. proposed an intermediate
technique called ‘‘clustered DVFS” which clusters the cores

into different DVFS domains and implements DVFS on a
per-cluster basis. The algorithm of this approach can be
summarized in three main steps: (1) find the optimal voltage/

frequency setting for each core individually, (2) find similarities
between cores (for example, the cores with similar voltage/fre-
quency setting from the first step over a certain number of

clock cycles are similar) and cluster similar cores together
and finally (3) evaluate the solution by finding the optimal
voltage/frequency setting for each cluster and compare it with
the actual setting of the cluster. This approach proved to have

significant results, compared to per-core DVFS but it returns
diminishing results when the number of clusters increases.

3.1.4. Time to vary voltage and frequency

Scaling voltage and frequency takes some latency to wait for
the voltage/frequency reach the desired level. However, fre-
quency scaling is much faster than voltage scaling. Conse-

quently, the processor can be in dangerous states where the
current voltage cannot support the frequency. In these cases,
hard faults would occur and cause the CPU to stop operating.

Fig. 7 shows the relationship between voltage and frequency
during DVFS. A boundary can be drawn to divide the volt-
age–frequency space into three areas: (1) area above the

boundary which contains dangerous power states because
the voltage cannot support the frequency, (2) area under the
boundary is not energy efficient, and (3) the boundary which

contains power-safe states. For example, if we want to scale
from s0 to s3, the frequency will scale faster which leads to
reaching the dangerous state s2.

The traditional method to overcome this issue was to scale

voltage first and stall the running application until the voltage
scaling is done, then scale frequency. It is very obvious that
this method introduces lots of latency. Some research has been

done to address the latency resulted from applying DVFS. Lai
et al. [26] proposed an algorithm that reduces latency by avoid-
ing unnecessary aggressive power states transitions. Also, Lai

et al. [27] proposed the Retroactive Frequency Scaling (RFS)
technique which suggests not stalling the execution of the
application during voltage scaling, but running it at the previ-
ous frequency setting until voltage scaling is done. Although

that eliminates much of the latency, it comes to the cost of run-
ning at power inefficient state during voltage scaling.



Figure 7 Relationship between voltage and frequency during

dynamic scaling.
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3.1.5. Limitations of DVFS

We can summarize the limitations of DVFS from the above
discussion as follows:

3.1.5.1. DVFS domain. Based on the level to which DVFS is

applied, some issues are represented. If DVFS is applied per-
core, that would mean higher cost and less scalability when
applying it to a processor with a large number of cores. When

DVFS is applied per-chip, it would ignore the individual needs
of each core separately. Also, in the clustered solution, it
would return diminishing results when the number of clusters

increases to a certain extent.

3.1.5.2. Large state transition delay. As we mentioned, voltage

change takes a while to complete. That makes the transition
from one power state to another slow and sometimes danger-
ous as showed in the hard faults issue. Slow transition is a big
problem as the required setting may also change in the period

of transition which makes it useless.

3.2. Asymmetric cores

3.2.1. Basic concept

The concept of designing a heterogeneous, single-ISA multi-

core processor [5] in which each core differs in performance
and power consumption has been very useful in the field of
power management. As previously mentioned, two types of

cores are designed: large (or complex) cores which is usually
out-of-order, superscalar, deep-pipelined core to support heav-
ily scalar workloads and small (or simple) core which, on the
other side, is usually in-order, scalar, short-pipelined core that

participates in parallel workloads.
One of the most popular commercial implementations of

asymmetric chip multiprocessor is ARM’s big.LITTLE archi-

tecture [28]. In 2011, ARM announced that in this architec-
ture, out-of-order superscalar Cortex-A15 cores are
combined with the simple, in-order Cortex-A7 cores as shown

in Fig. 8. They both implement the ARM v7A. The Cortex-
A15 support for high-performance, energy-hungry scalar
workloads while the Cortex-A7 support the parallel work-
loads. Later in 2012, ARM announced the Cortex-A53 and
Cortex-A57 that implement the ARMv8-A instruction set

and are compatible to be combined together in a big.LITTLE
architecture. Later in 2014, ARM announced the Cortex-A17
which can be combined with Cortex-A12 in the big.LITTLE

architecture.
Samsung implemented ARM’s big.LITTLE architecture in

its octa-core processor Exynos 5 [29] which consists of 8 cores:

4 small, power-efficient Cortex-A7 cores and 4 big, high-
performance Cortex-A15 cores. Also, NVidia implemented
its own heterogeneous 5-core multiprocessor Tegra3 [30] which
has 4 large, high-performance cores and one small, power-

efficient core. Asymmetric cores have been widely used recently
in most modern mobile and embedded systems [31] to reduce
power consumption of these devices. Using DVFS in asymmet-

ric cores is very popular and can be used in both single-ISA
and multiple-ISA heterogeneous architectures [32]. It is
expected to see more architectures and implementations of

the heterogeneous multi-core architecture as they have proven
usability, accommodating to various, special purpose applica-
tions and of course power efficiency needed for almost all

modern mobile and embedded devices.

3.2.2. Critical sections and thread scheduling

There are many issues associated with asymmetric cores. One

important issue is thread scheduling, in other words, the prob-
lem of assigning the thread to the proper core that would be
most power/performance efficient for its workload. Different

hardware platforms require different scheduling/resource allo-
cation techniques as they differ in performance/energy trade-
off spaces. So, choosing the wrong technique may give inverse,
negative results of power management as demonstrated in [33].

There has been lots of research on this topic, for example,
Lakshminaryana et al. [34] proposed a scheduling scheme
which schedules a task with longer remaining time to a faster

core. Also, Becchi et al. [35] used Instruction per Cycle (IPC)
as a metric for the assignment of threads to cores. Srinivasan
et al. [36] used performance prediction model to predict appli-

cation behavior on different cores and hence assign thread to
the proper core.

Some works used Last-Level Cache (LLC) misses as a met-
ric of scheduling threads as in [37]. LLC miss rate provides an

indication of the intensity of off-chip memory accesses which
contribute with a big part to the overall latency and in turns
can be a good metric for identifying the nature of each core/

thread. Manakkadu et al. [38] proposed a technique for iden-
tifying critical sections in threads based on a scoring mecha-
nism. Based on the score for each thread, best optimization

decisions can be made. Their study claims that by applying
asymmetric frequency scaling directed by the proposed metric,
28.13% savings in average power consumption were achieved

with a maximum of 7.1% performance loss. The approach
used in that paper depends on the IPC for each thread in dif-
ferent time intervals. It assumes that execution time is divided
into equal time intervals. At each interval, each thread has a

specific IPC. The score at a specific interval for a thread is
found by dividing the thread’s IPC at that period by the sum-
mation of all threads IPCs at the same period. The final score

of the thread is obtained by summing up all the thread’s scores
at all intervals. The formula can be written as follows:



Figure 8 ARM big.LITTLE architecture.
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where is the IPC of the ith thread at interval t. The thread with
the highest score is the most critical thread among other
threads and hence speeding it up would reduce the overall exe-

cution time.
In [39], Petrucci et al. proposed an optimization approach

that includes an Integer Linear Programming model [40]

(rather than concentrating on a single performance metric)
and a scheme to dynamically solve the problem of thread-to-
core assignment. It uses a regression model to predict at run-
time how thread would perform on different types of cores

available and hence map that thread to the core that suits it
best. Their stated results show an EDP improvement over
other scheduling techniques of 10–40% depending on the

workload. However, that approach works by reallocating a
thread to another core when the performance profile changes.
This means that a thread may execute on the wrong core for a

while before its performance profile changes and hence allow-
ing many inefficient power states. Also, the action of thread re-
locating may degrade performance significantly especially in
the case of shared LLC as contention may exist.

Moreover, frameworks for dynamic power management in
such asymmetric architectures were purposed. In [41] one is
presented. The framework proposed is price theory based that

tries to exploit all energy saving opportunities. It employs
DVFS, load balancing and thread re-allocation to achieve as
high energy savings rates as possible. That study designed

and implemented that framework within Linux OS on ARM
big.LITTLE architecture. We found that framework very
promising as it uses more than a single power saving opportu-

nity and it is distributed and scalable. However, it divides cores
into clusters. Each cluster have a specific V–F setting and all
cores within a cluster are constrained to be symmetric. This
reduces flexibility and wastes some good power saving oppor-

tunities. Also, the framework takes into consideration the pri-
ority of the task which is assumed to be assigned by the user.
That introduces some level of user overhead. Moreover, the

framework is implemented within the linux kernel which
means it requires modifications in the kernel itself and also

requires the modified version of the kernel to be re-built to
make use of the framework.

3.2.3. Many-type asymmetric cores

In addition to using only two types of cores in asymmetric chip
multiprocessor, Kumar et al. [42] proposed single-ISA hetero-
geneous multi-core architectures that assume a single chip con-

tains different kinds of cores (not only two) based on different
power/performance requirements. The study decides which
core is best for a certain application execution and then ship

the application to that core. It assumes example architecture
with five cores with different architectures and claims that ini-
tial results show a 3� power reduction in the cost of only 18%

performance loss.

3.2.4. Limitations of asymmetric cores

From the above discussion, it is obvious that asymmetric chip

multiprocessor architectures suffer from some limitations. One
of the most important limitations is that the number of large
and small core is fixed at design time and cannot be modified.

This reduces the flexibility of accommodating to the software
diversity.

Another important limitation of asymmetric CMPs is the
overhead and latency introduced during the process of thread

migration between cores. Along with that latency, another
data locality issue is presented. Each core has one or more
levels of private cache. When threads are migrated from one

core to another, data must also be migrated from one cache
to another or must be fetched again from main memory. That
introduces another communication/delay overhead and limits

performance improvements.

3.3. Thread motion

3.3.1. Basic concept

Based on [43], this technique was proposed to enhance the
well-known DVFS. It proved that 2 levels of voltage–fre-

quency domains are sufficient to improve performance. The
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idea of thread motion is to have small cores, running at two
different levels of voltage–frequency levels. When applications
are executed, the algorithm decides which core has the best

voltage–frequency setting to execute that application and
moves it to that core instead of changing voltage–frequency
pair for that core which introduced more latency. Thread

Motion enables applications to migrate to cores with higher
or lower voltage/frequency settings depending on the current
workload of the program. For example, if one application

could benefit from a higher voltage/frequency setting on some
core while the application on that core is stalled for I/O oper-
ation for example, thread motion swaps the two applications
between the cores.

3.3.2. Limitations of thread motion

The limitation of this technique is that it was proposed for

simple, homogeneous cores and it’s also limited to
power-constrained multi-core systems. The results show that
it provides up to 20% better performance than coarse-
grained DVFS.

3.4. Variable size cores

3.4.1. Basic concept

The basic idea is to design a complex, large core that is able to
degrade later into a small core [44]. This can be done through

dynamically disabling execution units and even pipestages.
This idea is based on the classic power gating [45] technique.
Power gating algorithms typically operate by turning off the

resource if it has been idle for a specified number of clock
cycles. In cases of high scalar workloads (low parallelism),
run a few cores that would fully-operate to support the scalar
performance. However, when dealing with highly parallel

workloads, it would be power/throughput performance effi-
cient to run many cores using fewer resources on each core.

3.4.2. Limitations of power-gating

It is obvious that power-gating (and consequently variable-size
cores) has some serious limitations:

3.4.2.1. Mis-prediction. As we viewed, power-gating algorithms
depend on turning off a resource that is reported idle for a
specified number of clock cycles. Hence, the controller may

turn off some resource which was idle just before the applica-
tion needs that resource again, giving negative power savings
and degrading performance significantly.

3.4.2.2. Small power savings. While turning off some portions/
resources of the systems saves power consumption, it is not of
that great impact. Power savings resulting from this technique

are very minimal compared to other techniques such as DVFS.

3.5. Speculation control

3.5.1. Basic concept

Some energy is wasted on mis-speculated instructions for

example, instructions after a mis-predicted branch. The results
of a mis-speculated instruction are more likely to be discarded
but energy has been wasted anyway to execute that instruction.

Speculation reduction technique suggests that in cases of
highly parallel workload, it is power efficient to run many
cores with little speculation on each core. In scalar workloads,
it’s advisable to run a few cores with as much speculation as

possible.

3.5.2. Limitations of speculation control

Regarding limitations of this technique, it is not very useful in

cases of parallel workloads. Parallel workloads do not suffer a
lot from mis-speculated instructions. Also, latency introduced
by the pipeline degrades performance significantly.

3.6. Core fusion

3.6.1. Basic concept

Core Fusion [6] is re-configurable chip multiprocessor archi-
tecture that starts with small simple cores which are able to

dynamically fuse into a larger core to support scalar perfor-
mance when needed. It neither requires special programming
effort nor specialized compiler support. Core Fusion can
accommodate to software diversity and variations of work-

loads. When the workload is extremely parallel, distribute
the workload among the simple cores. When the workload is
heavily scalar, the simple cores dynamically fuse into a larger,

more powerful single core. Full details of hardware implemen-
tation of this architecture can be found in [6]. Many re-
configurable architectures used Core Fusion as the foundation

[46–48].

3.6.2. Limitations of core fusion

Limitations of Core Fusion according to [49] include that the

fused large core consumes lots of power and is slower than a
traditional out-of-order core because there are additional
latencies among the pipeline stages of the fused core. Also,

mode switching between small cores and fused core comes at
the cost of flushing instruction cache and moving data between
caches.

4. Proposed technique

Based on the above discussion and referring to the comparison

provided by Table 1, we were able to propose a technique we
think it will provide best balance between consumed power
reduction and overall performance/throughput. This technique
would make use of clustered DVFS [25] with Retroactive

Frequency Scaling (RFS) [27] in Asymmetric [5] Many-Type
Multicore Processor [42] which schedules critical sections
threads using the scoring mechanism [38]. Power gating tech-

nique [44] may also be used in cases of very low CPU utiliza-
tion. The technique will be controlled via an adaptive control
mechanism which decides based on many parameters

(workload style, current cores utilization, available amount
of parallelism, current performance, e.g.) how to use that
technique efficiently.

For example, when the initial workload is highly-parallel,

small cores frequency will be fixed while the frequency of the
large cores will be scaled down and all cores will be used to
execute that parallel code. If the workload contains lots of

sequential code, large cores will be used at maximum fre-
quency. Our technique is currently subject to further research
and validating it using simulation is our future work.



T
a
b
le

1
C
o
m
p
a
ri
so
n
b
et
w
ee
n
d
if
fe
re
n
t
p
o
w
er

m
a
n
a
g
em

en
t
te
ch
n
iq
u
es

in
m
u
lt
i-
co
re

p
ro
ce
ss
o
rs
.

D
V
F
S

A
sy
m
m
et
ri
c
C
o
re
s

T
h
re
a
d
M
o
ti
o
n

V
a
ri
a
b
le
-s
iz
e
co
re
s

S
p
ec
u
la
ti
o
n
C
o
n
tr
o
l

C
o
re

F
u
si
o
n

Id
ea

C
h
a
n
g
e
v
o
lt
a
g
e
a
n
d

fr
eq
u
en
cy

a
cc
o
rd
in
g
to

th
e
re
q
u
ir
ed

p
er
fo
rm

a
n
ce
/t
h
ro
u
g
h
p
u
t

H
a
v
in
g
sm

a
ll
co
re
s
fo
r

p
a
ra
ll
el
co
d
e
ex
ec
u
ti
o
n
a
n
d

a
la
rg
e
co
re

fo
r
sc
a
la
r
co
d
e

ex
ec
u
ti
o
n

H
a
v
in
g
a
lm

o
st

2
v
o
lt
a
g
e/

fr
eq
u
en
cy

d
o
m
a
in
s,
m
ig
ra
ti
n
g

th
re
a
d
s
b
et
w
ee
n
co
re
s
o
f

d
iff
er
en
t
d
o
m
a
in
s

T
u
rn
in
g
o
ff
/o
n
re
so
u
rc
es

a
s
n
ee
d
ed

to
sa
v
e
p
o
w
er

R
ed
u
ce

sp
ec
u
la
ti
o
n
to

sa
v
e

p
o
w
er

H
a
v
in
g
sm

a
ll
co
re
s
th
a
t

ex
ec
u
te

p
a
ra
ll
el

co
d
e
a
n
d

ca
n
d
y
n
a
m
ic
a
ll
y
fu
se

in
to

a

la
rg
e
co
re

A
d
v
a
n
ta
g
es

–
v
er
y

ef
fe
ct
iv
e

p
o
w
er

sa
v
in
g
s
w
it
h
m
in
im

a
l

p
er
fo
rm

a
n
ce

d
eg
ra
d
a
ti
o
n

–
ea
sy

to
im

p
le
m
en
t
o
n

m
a
n
y
sc
a
le
s

–
ef
fe
ct
iv
e

re
su
lt
s

in

p
o
w
er

sa
v
in
g
s

–
a
cc
o
m
m
o
d
a
te
s
w
el
l
to

so
ft
w
a
re

d
iv
er
si
ty

–
fa
st
ch
a
n
g
e
b
et
w
ee
n
d
if
fe
r-

en
t
V
F
se
tt
in
g
s

–
ef
fe
ct
iv
e
re
su
lt
s
in

p
o
w
er

sa
v
in
g
s
(r
el
y
o
n
D
V
F
S
)

–
v
er
y

si
m
p
le

to

im
p
le
m
en
t

–
ca
n

b
e

u
se
d

in
co
n
-

ju
n
ct
io
n

w
it
h

o
th
er

te
ch
n
iq
u
es

F
u
tu
re

w
o
rk

su
g
g
es
ts

th
e

ev
a
lu
a
ti
o
n
o
f
su
ch

h
y
b
ri
d
,

co
m
p
a
ti
b
le

te
ch
n
iq
u
es
/

im
p
ro
v
em

en
ts

to
g
et

fu
rt
h
er

b
et
te
r
re
su
lt
s
in

b
o
th

p
er
fo
rm

a
n
ce

a
n
d
en
er
g
y
te
rm

s.

–
lo
w

a
re
a
co
st

–
ex
ce
ll
en
t

a
cc
o
m
m
o
d
a
-

ti
o
n

to
so
ft
w
a
re

d
iv
er
si
ty

–
n
o

ex
tr
a
p
ro
g
ra
m
m
in
g

ef
fo
rt

n
ee
d
ed

S
h
o
rt
co
m
in
g
s

–
lo
n
g

tr
a
n
si
ti
o
n

ti
m
e

b
et
w
ee
n
p
o
w
er

st
a
te
s

–
th
e
le
v
el

o
f
g
ra
n
u
la
r-

it
y
to

w
h
ic
h
D
V
F
S
is

a
p
p
li
ed

a
ff
ec
ts

co
st

a
n
d
p
er
fo
rm

a
n
ce

–
n
u
m
b
er

o
f

sm
a
ll
/b
ig

co
re
s
is

fi
x
ed

a
t
d
es
ig
n

ti
m
e

–
la
te
n
cy

in
tr
o
d
u
ce
d
d
u
r-

in
g
th
re
a
d
m
ig
ra
ti
o
n

–
d
a
ta

lo
ca
li
ty

is
su
e
d
u
r-

in
g
m
ig
ra
ti
o
n

–
ch
o
o
si
n
g

a
p
p
ro
p
ri
a
te

sc
h
ed
u
li
n
g
/m

a
p
p
in
g

te
ch
n
iq
u
e

–
li
m
it
ed

to
h
o
m
o
g
en
o
u
s

C
M
P
a
rc
h
it
ec
tu
re
s

–
v
er
y
lo
w

p
o
w
er

sa
v
in
g

w
h
en

u
se
d
a
lo
n
e

–
m
is
-p
re
d
ic
ti
o
n

o
f

re
so
u
rc
es

to
b
e
tu
rn
ed

o
ff
m
a
y
re
su
lt
in

n
eg
a
-

ti
v
e
p
o
w
er

sa
v
in
g
s

–
n
o
t
v
er
y
u
se
fu
l
in

ca
se
s
o
f

p
a
ra
ll
el

w
o
rk
lo
a
d
s
a
s
th
ey

d
o
n
o
t
su
ff
er

a
lo
t
fr
o
m

m
is
-

sp
ec
u
la
te
d
in
st
ru
ct
io
n
s

–
la
te
n
cy

in
tr
o
d
u
ce
d

b
y

th
e

p
ip
el
in
e

–
m
o
re

la
te
n
ci
es

in
th
e

fu
se
d
co
re

th
a
n
a
tr
a
d
i-

ti
o
n
a
l
O
o
O

co
re
.

–
ca
ch
e
fl
u
sh
in
g
a
n
d
d
a
ta

m
ig
ra
ti
o
n
d
el
a
y
d
u
ri
n
g

m
o
d
e
sw

it
ch
in
g

454 K.M. Attia et al.
5. Conclusion

In this paper we investigated the concept of multi-core proces-
sors, research trends in that field and focused on the power

management issue. We reviewed most of the used techniques,
their advantages and disadvantages and the research done
for each technique to address its problems. Finally, we pro-

posed a new technique that makes use of the gathered results.
It is very clear from the discussion that there is no absolute
perfect way for power management in chip multiprocessor
architecture. It depends on whether or not you are open to

changes in the architecture itself, how much you can sacrifice
performance and the amount of workload you expect on your
chip. However, the combination of some techniques with

solutions made to improve those techniques is an excellent
choice to think of. For example, applying thread scoring in
many-type asymmetric cores seems very promising. Future

work suggests the evaluation of such hybrid, compatible
techniques/improvements to get further better results in both
performance and energy terms.
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