
Pattern-Aware Vectorization for Sparse Matrix Computations
Khaled Abdelaal

School of Computer Science
University of Oklahoma

Richard Veras
Center for Computation & Technology

Louisiana State University

Martin Kong
School of Computer Science

University of Oklahoma

Sparse data is dominant
• Big Data Analytics
• Social Networks
• Scientific Computing
• Machine Learning

Efficient storage and computation algorithms needed

Fast, low-overhead computations on sparse
matrices

Data-driven applications

Objective

Motivation

Patterns non-zero coverage for vector size 4 (top) and 8 (bottom) for twitter, facebook and hepTh graphs from SNAP

▪ Potential for vectorization
▪ Patterns with a single non-zero coverage drops by extending

vector size
▪ Focusing on only a few patterns for vectorization covers most

of the matrix

Approach

Dense Segments
Extraction

Vector Code
Generation

Visiting Patterns
using Codelets

0 0 0 1 0 1 0 0
1 0 0 0 1 1 0 0
0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0

Sample patterns of vector size 4 in a
sparse 4 x 8 matrix

Related Work Limitations
▪ Accelerators (i.e., GPUs) provide high speed-

ups but limited memory capacity.
▪ Unified memory with automatic

host/device paging degrades performance
▪ Limited compiler support (i.e., GCC) for

automatic vectorization on sparse structures
▪ Existing storage formats for sparse matrices

do not automatically extract dense
segments, not seizing the potential for
aggressive vectorization

▪ Generate a list of dense
regions within the sparse
matrix

▪ Efficient scanning
algorithm (or user input)

▪Data-level parallelism
(SIMD) for sparse matrix
computations

▪ Control-flow free vector
code

▪Generate codelets tuned
to each vector pattern

▪ Implement in back-end
compilers (limited existing
support in GCC)

▪Use hierarchical
representations of sparse
matrices to enable fast
exploration

▪Use Gather (load NNZ
from sparse matrix using
index vectors) and Scatter
(store results to sparse
locations)

▪Make use of vector
intrinsics

▪ Polyhedral approach to be
explored

Evaluation
• Kernel: Sparse matrix-dense vector multiplication
• Sparse matrix: facebook adjacency matrix from

SNAP (4039 x 4039), 176468 Single FP NNZs
• Memory: main 16 GB, L3 cache: 12 MB, L2 cache

1.5 MB, L1 cache: 192 KB
• Compiler: clang++ v10.0
• CPU: 12 cores (only sequential execution used)
• Metric: Speedup over naïve dense multiplication
• Proposed vec (dense segments start locations

metadata + vectorization using AVX256 intrinsics)
achieves around 4.95x speedup over patt (clang
auto-vectorization with metadata). COO achieves
1.5x speedup over proposed vec

Conclusion
• A new approach to enable more efficient sparse data computation using:
• Extraction and exploitation of metadata such as dense segments locations
• Generation of vector code to use data-level parallelism
• Efficiently visiting patterns using codelets

• Preliminary results
• Potential of exploiting additional metadata
• Potential of generating vector code combined with efficient storage formats

DONE

ONGOING

ONGOING

ONGOING

0

10

20

30

40

50

60

Speed up

proposed vec patt

coo naïve

